Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Demonstrating real-time hydrodynamic motion response in force control for regular waves in a robotized dry test rig with a point-absorber WEC
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Electrical Engineering, Electricity.ORCID iD: 0000-0003-3028-4887
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Electrical Engineering, Electricity.
2023 (English)In: Proceedings of the 15th European Wave and Tidal Energy Conference, Bilbao, 3-7 September 2023. / [ed] Jesús María Blanco Ilzarbe, Bilbao: European Wave and Tidal Energy Conference , 2023, Vol. 15Conference paper, Published paper (Refereed)
Abstract [en]

A 6-Degrees-Of-Freedom robotized dry test rig has been developed at Uppsala University to test point absorbing WECs (Wave Energy Converters). Using a six joint industrial robot as a buoy movement emulator, the robot's outermost point (joint 6) is connected to the wire from the generator concept WEC PTO (Power Take-Off). The robot's movement in joint 6 thus corresponds to the buoy movement on the sea surface. The test rig can be used for various point absorbing WEC PTO units. In this project, the test rig has been used with a WEC-PTO prototype. The point absorbing WEC-LRTC concept is being developed at Uppsala University. The generator concept is made up of two identical rotating generators. A wire is used as a connection between the generator concept at the seabed and a buoy on the sea surface.  The goal of this article is to demonstrate and evaluate how the test rig interacts with the LRTC-WEC PTO in regular waves. In the presented experiments, a hydrodynamic model with force control method has been used.  The results show a clear difference in the use of the hydrodynamic model with different sizes of the buoy. The test rig with the force control model can be used easily to test different theoretical buoys and different load settings for WEC PTOs. Effective experiments can be performed with real PTO forces instead of simplified simulations.  Future work is to experiment with the position control method and also experiments with irregular waves.

Place, publisher, year, edition, pages
Bilbao: European Wave and Tidal Energy Conference , 2023. Vol. 15
Keywords [en]
LRTC, point-absorber, dry test rig, wave emulator, industrial robot, wave energy converter
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:uu:diva-518384DOI: 10.36688/ewtec-2023-643OAI: oai:DiVA.org:uu-518384DiVA, id: diva2:1820745
Conference
15th European Wave and Tidal Energy Conference (EWTEC)
Available from: 2023-12-18 Created: 2023-12-18 Last updated: 2024-12-10Bibliographically approved
In thesis
1. Industrial robot as main equipment for testing and production of Wave Energy Converters
Open this publication in new window or tab >>Industrial robot as main equipment for testing and production of Wave Energy Converters
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Since 2001, research and development on the conversion of ocean wave energy into electricity has been conducted at the Division of Electricity at Uppsala University. Different Wave Energy Converter (WEC) technologies has been developed, such as the point-absorber linear Uppsala University WEC (UU-WEC) and the Low-RPM Torque Converter WEC (LRTC-WEC). 

This thesis focuses primarily on the development of a robotized dry test rig, to facilitate assessment of different WEC technologies in house. An existing industrial six degrees of freedom robot system is used to emulate buoy movement on the sea surface, with regard to the impact of hydrodynamic forces in real time. Two different methods for integrating a hydrodynamic model to the robot controller are presented: the force control and the position control methods. Both methods are evaluated and validated across various regular and irregular wave climates, as well as for different theoretical buoy shapes.  

The secondary focus in this thesis is the development of robotized production methods for the UU-WEC. The surface mounting of Neodymium Iron Boron (Nd2Fe14B) magnets and the cutting of rubber discs are investigated, resulting in viable solutions that include development and validation of robot tooling and robot cell proposals. 

A smaller segment of the thesis examines the use of robotics in teaching a course for bachelor engineering students. At the outbreak of the COVID-19 pandemic a challenging task was imposed: a swift shift to online distant education. A major task was to replace physical lab exercises with video recordings, detailed instructions and simulated laboratory environments. The results indicated that the upgraded online education successfully meet the course objectives.

The final part of the thesis investigates the use of WECs for powering a desalination plant. Desalination presents a viable solution for islands or coastal regions deficient in freshwater resources, but is also an energy intensive process. Practical experiment evaluated the possibility of utilizing the UU-WEC as power source for desalination plants.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2025. p. 78
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2485
Keywords
Dry test rig, Industrial robotics, Manufacturing automation, Large-scale production, Linear generator, Wave energy converter, Engineering education, Desalination
National Category
Robotics and automation Other Electrical Engineering, Electronic Engineering, Information Engineering Communication Systems Control Engineering
Research subject
Engineering Science with specialization in Science of Electricity; Engineering Science with specialization in Electronics; Engineering science with specialization in Applied Mechanics; Engineering Science with specialization in industrial engineering and management; Electrical Engineering with specialization in Automatic Control; Engineering Science with specialization in industrial engineering and management
Identifiers
urn:nbn:se:uu:diva-544285 (URN)978-91-513-2337-4 (ISBN)
Public defence
2025-02-10, Polhem, Lägerhyddsvägen 1, 75237 Uppsala, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2025-01-17 Created: 2024-12-10 Last updated: 2025-02-05

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Salar, DanaHultman, Erik

Search in DiVA

By author/editor
Salar, DanaHultman, Erik
By organisation
Electricity
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf