Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep learning-based dose prediction for magnetic resonance-guided prostate radiotherapy
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division Vi3.ORCID iD: 0000-0001-7764-1787
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer precision medicine. Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
2024 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 51, no 11, p. 8087-8095Article in journal (Refereed) Published
Abstract [en]

  Background

Daily adaptive radiotherapy, as performed with the Elekta Unity MR-Linac, requires choosing between different adaptation methods, namely ATP (Adapt to Position) and ATS (Adapt to Shape), where the latter requires daily re-contouring to obtain a dose plan tailored to the daily anatomy. These steps are inherently resource-intensive, and quickly predicting the dose distribution and the dosimetric evaluation criteria while the patient is on the table could facilitate a fast selection of adaptation method and decrease the treatment times.

Purpose

In this work, we aimed to develop a deep-learning-based dose-prediction pipeline for prostate MR-Linac treatments.

Methods

Two hundred twelve MR-images, structure sets, and dose distributions from 35 prostate patients treated with 6.1 Gy for 7 or 6 fractions at our MR-Linac were included, split into train/test partitions of 152/60 images, respectively. A deep-learning segmentation network was trained to segment the CTV (prostate), bladder, and rectum. A second network was trained to predict the dose distribution based on manually delineated structures. At inference, the predicted segmentations acted as input to the dose prediction network, and the predicted dose was compared to the true (optimized in the treatment planning system) dose distribution.

Results

Median DSC values from the segmentation network were 0.90/0.94/0.87 for CTV/bladder/rectum. Predicted segmentations as input to the dose prediction resulted in mean differences between predicted and true doses of 0.7%/0.7%/1.7% (relative to the prescription dose) for D98%/D95%/D2% for the CTV. For the bladder, the difference was 0.7%/0.3% for Dmean/D2% and for the rectum 0.1/0.2/0.2 pp (percentage points) for V33Gy/V38Gy/V41Gy. In comparison, true segmentations as input resulted in differences of 1.1%/0.9%/1.6% for CTV, 0.5%/0.4% for bladder, and 0.7/0.4/0.3 pp for the rectum. Only D2% for CTV and Dmean/D2% for bladder were found to be statistically significantly better when using true structures instead of predicted structures as input to the dose prediction.

Conclusions

Small differences in the fulfillment of clinical dose-volume constraints are seen between utilizing deep-learning predicted structures as input to a dose prediction network and manual structures. Overall mean differences <2% indicate that the dose-prediction pipeline is useful as a decision support tool where differences are >2%.

Place, publisher, year, edition, pages
John Wiley & Sons, 2024. Vol. 51, no 11, p. 8087-8095
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:uu:diva-526295DOI: 10.1002/mp.17312ISI: 001284950100001PubMedID: 39106418Scopus ID: 2-s2.0-85200513578OAI: oai:DiVA.org:uu-526295DiVA, id: diva2:1849494
Available from: 2024-04-08 Created: 2024-04-08 Last updated: 2025-01-13Bibliographically approved
In thesis
1. Machine Learning in Magnetic Resonance-Guided Adaptive Radiotherapy
Open this publication in new window or tab >>Machine Learning in Magnetic Resonance-Guided Adaptive Radiotherapy
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In radiotherapy, treatments are frequently distributed over multiple weeks, and the radiation dose delivered across several sessions. A significant hurdle in this approach is the anatomical changes that occur between the planning stage and subsequent treatment sessions, leading to uncertainties in the treatment. The MR-Linac system, which combines a linear accelerator with an MRI scanner, addresses this issue by allowing for daily adjustments to the treatment plan based on the patient's current anatomy. However, the process for making these adjustments, involving image fusion, re-contouring, and plan re-optimization, can be quite elaborate and time-consuming. This project aimed to identify opportunities within the daily treatment routine where machine learning and deep learning could streamline the process, thereby enhancing efficiency, with a focus on prostate cancer treatments due to their frequent occurrence at our facility. We leveraged deep learning to train patient-specific models for segmenting anatomical structures in daily MRI scans, matching the accuracy of existing deformable image registration techniques. Furthermore, we extended this concept to segmenting structures and predicting radiation dose distributions, offering a swift assessment of potential dose distribution before engaging in the more complex manual workflow. This could aid in selecting the most suitable adaptation method more quickly. Additionally, we developed motion models for intrafractional motion and for segmenting images at lower resolutions to facilitate a target tracking process. Throughout this project, we showed how machine learning and deep learning techniques could contribute to optimizing the daily MR-Linac workflow.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2024. p. 55
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 2044
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Medical Radiophysics
Identifiers
urn:nbn:se:uu:diva-526296 (URN)978-91-513-2114-1 (ISBN)
Public defence
2024-05-31, H:son Holmdahlsalen, Akademiska Sjukhuset, ing 100, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2024-05-06 Created: 2024-04-09 Last updated: 2024-05-16

Open Access in DiVA

fulltext(1219 kB)48 downloads
File information
File name FULLTEXT01.pdfFile size 1219 kBChecksum SHA-512
fbf992b7cb1793b2507692862551751cd185329d50fcd7ef3688cad2e673d4389a33d83de45098f7f29f4f4a587fb7e41dc51d24cb8fc7699c42d330cd1ab749
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Fransson, SamuelStrand, RobinTilly, David

Search in DiVA

By author/editor
Fransson, SamuelStrand, RobinTilly, David
By organisation
RadiologyComputerized Image Analysis and Human-Computer InteractionDivision Vi3Cancer precision medicine
In the same journal
Medical physics (Lancaster)
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
Total: 48 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf