Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantitative Characterization of Memory Contention
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems. (UART)
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
2012 (English)Report (Other academic)
Abstract [en]

On multicore processors, co-executing applications compete for shared resources, such as cache capacity and memory bandwidth. This leads to suboptimal resource allocation and can cause substantial performance loss, which makes it important to effectively manage these shared resources. This, however, requires insights into how the applications are impacted by such resource sharing.

While there are several methods to analyze the performance impact of cache contention, less attention has been paid to general, quantitative methods for analyzing the impact of contention for memory bandwidth. To this end we introduce the Bandwidth Bandit, a general, quantitative, profiling method for analyzing the performance impact of contention for memory bandwidth on multicore machines.

The profiling data captured by the Bandwidth Bandit is presented in a it bandwidth graph. This graph accurately captures the measured application's performance as a function of its available memory bandwidth, and enables us to determine how much the application suffers when its available bandwidth is reduced. To demonstrate the value of this data, we present a case study in which we use the bandwidth graph to analyze the performance impact of memory contention when co-running multiple instances of single threaded application.

Place, publisher, year, edition, pages
Uppsala: Uppsala universitet, 2012. , p. 10
Series
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2012-029
National Category
Computer Systems
Research subject
Computer Systems Sciences
Identifiers
URN: urn:nbn:se:uu:diva-182445OAI: oai:DiVA.org:uu-182445DiVA, id: diva2:559787
Available from: 2013-03-28 Created: 2012-10-10 Last updated: 2013-03-28Bibliographically approved
In thesis
1. Profiling Methods for Memory Centric Software Performance Analysis
Open this publication in new window or tab >>Profiling Methods for Memory Centric Software Performance Analysis
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To reduce latency and increase bandwidth to memory, modern microprocessors are often designed with deep memory hierarchies including several levels of caches. For such microprocessors, both the latency and the bandwidth to off-chip memory are typically about two orders of magnitude worse than the latency and bandwidth to the fastest on-chip cache. Consequently, the performance of many applications is largely determined by how well they utilize the caches and bandwidths in the memory hierarchy. For such applications, there are two principal approaches to improve performance: optimize the memory hierarchy and optimize the software. In both cases, it is important to both qualitatively and quantitatively understand how the software utilizes and interacts with the resources (e.g., cache and bandwidths) in the memory hierarchy.

This thesis presents several novel profiling methods for memory-centric software performance analysis. The goal of these profiling methods is to provide general, high-level, quantitative information describing how the profiled applications utilize the resources in the memory hierarchy, and thereby help software and hardware developers identify opportunities for memory related hardware and software optimizations. For such techniques to be broadly applicable the data collection should have minimal impact on the profiled application, while not being dependent on custom hardware and/or operating system extensions. Furthermore, the resulting profiling information should be accurate and easy to interpret.

While several use cases are presented, the main focus of this thesis is the design and evaluation of the core profiling methods. These core profiling methods measure and/or estimate how high-level performance metrics, such as miss-and fetch ratio; off-chip bandwidth demand; and execution rate are affected by the amount of resources the profiled applications receive. This thesis shows that such high-level profiling information can be accurately obtained with very little impact on the profiled applications and without requiring costly simulations or custom hardware support.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. p. 51
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1000
National Category
Computer Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:uu:diva-182594 (URN)978-91-554-8541-2 (ISBN)
Public defence
2012-12-21, Room 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 13:00 (English)
Opponent
Supervisors
Projects
UPMARC
Available from: 2012-11-29 Created: 2012-10-11 Last updated: 2018-01-12Bibliographically approved

Open Access in DiVA

Eklöv rapport(418 kB)433 downloads
File information
File name FULLTEXT02.pdfFile size 418 kBChecksum SHA-512
d9bdb82f49880a7a58b5c2cdb7a4fac5b7169ebe1669a44b5cc47114b6c54ac1819da7f1e3e3f9359743e868eb26fb2cb408674a7633cd87174b73f0dba69f18
Type fulltextMimetype application/pdf

Other links

on department web

Authority records

Eklöv, DavidNikoleris, NikosBlack-Schaffer, DavidHägersten, Erik

Search in DiVA

By author/editor
Eklöv, DavidNikoleris, NikosBlack-Schaffer, DavidHägersten, Erik
By organisation
Computer Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 433 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 891 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf