Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
123456 1 - 50 of 275
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ainla, Alar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Nafion (R)-polybenzimidazole (PBI) composite membranes for DMFC applications2007In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 178, no 7-10, p. 581-585Article in journal (Refereed)
    Abstract [en]

    Nafion®–PBI composites were prepared by diffusing synthesized PBI from solution phase into Nafion® membranes, using different concentrations and drying temperatures. In some cases, Nafion® was treated with diethyl amine to screen the –SO3H groups and thereby avoid the strong acid–base interactions between the polymers during diffusion. The presence of PBI in the membranes was characterized with FT–IR spectroscopy. The performance of the membranes was studied by in-plane conductivity and methanol permeability. The performance ratio (the ratio between conductivity and methanol permeability compared to Nafion®) increased by up to 50% for the composite membranes compared to Nafion®.

  • 2.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brant, William
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Marzano, Fernanda
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen AG.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO)—In Situ Neutron Diffraction and Performance in Li-Ion Full Cells2018Conference paper (Refereed)
    Abstract [en]

    LiNi0.5Mn1.5O4 (LNMO) is a promising spinel-type positive electrode for lithium ion batteries as it operates at high voltage and possesses high power capability. However, rapid performance degradation in full cells, especially at elevated temperatures, is a problem. There has been a considerable interest in its crystal structure as this is known to affect its electrochemical performance. LNMO can adopt a P4332 (cation ordered) or Fd-3m (cation disordered) arrangement depending on the synthesis conditions. Most of the studies in literature agree on better electrochemical performance for disordered LNMO [1], however, a clear understanding of the reason for this behaviour is still lacking. This partly arises from the fact that synthesis conditions leading to disordering also lead to oxygen deficiency, rock-salt impurities and therefore generate some Mn3+ [2]. Most commonly, X-ray diffraction is used to characterize these materials, however, accurate structural analysis is difficult due to the near identical scattering lengths of Mn and Ni. This is not the case for neutron diffraction. In this study, an in-situ neutron diffraction heating-cooling experiment was conducted on slightly Mn-rich LNMO under pure oxygen atmosphere in order to investigate relationship between disordering and oxygen deficiency. The study shows for the first time that there is no direct relationship between oxygen loss and cation disordering, as disordering starts prior to oxygen release. Our findings suggest that it is possible to obtain samples with varying degrees of ordering, yet with the same oxygen content and free from impurities. In the second part of the study, highly ordered, partially ordered and fully disordered samples have been tested in LNMO∥LTO (Li4Ti5O12) full cells at 55 °C. It is shown that differences in their performances arise only after repeated cycling, while all the samples behave similarly at the beginning of the test. The difference is believed to be related to instabilities of LNMO at higher voltages, that is, in its lower lithiation states.

    [1] A. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 7 (2014) 1339.

    [2] M. Kunduraci, G.G. Amatucci, J. Power Sources. 165 (2007) 359–367.

  • 3.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Concentrated LiFSI-€“Ethylene Carbonate Electrolytes and Their Compatibility with High-Capacity and High-Voltage Electrodes2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 1, p. 585-595Article in journal (Refereed)
    Abstract [en]

    The unusual physical and chemical properties of electrolytes with excessive salt contents have resulted in rising interest in highly concentrated electrolytes, especially for their application in batteries. Here, we report strikingly good electrochemical performance in terms of conductivity and stability for a binary electrolyte system, consisting of lithium bis(fluorosulfonyl)imide (LiFSI) salt and ethylene carbonate (EC) solvent. The electrolyte is explored for different cell configurations spanning both high-capacity and high-voltage electrodes, which are well known for incompatibilities with conventional electrolyte systems: Li metal, Si/graphite composites, LiNi0.33Mn0.33Co0.33O2 (NMC111), and LiNi0.5Mn1.5O4 (LNMO). As compared to a LiTFSI counterpart as well as a common LP40 electrolyte, it is seen that the LiFSI:EC electrolyte system is superior in Li-metal–Si/graphite cells. Moreover, in the absence of Li metal, it is possible to use highly concentrated electrolytes (e.g., 1:2 salt:solvent molar ratio), and a considerable improvement on the electrochemical performance of NMC111-Si/graphite cells was achieved with the LiFSI:EC 1:2 electrolyte both at the room temperature and elevated temperature (55 °C). Surface characterization with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of thicker surface film formation with the LiFSI-based electrolyte as compared to the reference electrolyte (LP40) for both positive and negative electrodes, indicating better passivation ability of such surface films during extended cycling. Despite displaying good stability with the NMC111 positive electrode, the LiFSI-based electrolyte showed less compatibility with the high-voltage spinel LNMO electrode (4.7 V vs Li+/Li).

    Download full text (pdf)
    fulltext
  • 4.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB, SE-15187 Sodertalje, Sweden.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Capacity Loss in LiNi0.5Mn1.5O4-Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures2018In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, no 21, p. 11234-11248Article in journal (Refereed)
    Abstract [en]

    The high-voltage spinel LiNi0.5Mn1.5O4, (LNMO) is an attractive positive electrode because of its operating voltage around 4.7 V (vs Li/Li+) and high power capability. However, problems including electrolyte decomposition at high voltage and transition metal dissolution, especially at elevated temperatures, have limited its potential use in practical full cells. In this paper, a fundamental study for LNMO parallel to Li4Ti5O12 (LTO) full cells has been performed to understand the effect of different capacity fading mechanisms contributing to overall cell failure. Electrochemical characterization of cells in different configurations (regular full cells, back-to-back pseudo-full cells, and 3-electrode full cells) combined with an intermittent current interruption technique have been performed. Capacity fade in the full cell configuration was mainly due to progressively limited lithiation of electrodes caused by a more severe degree of parasitic reactions at the LTO electrode, while the contributions from active mass loss from LNMO or increases in internal cell resistance were minor. A comparison of cell formats constructed with and without the possibility of cross-talk indicates that the parasitic reactions on LTO occur because of the transfer of reaction products from the LNMO side. The efficiency of LTO is more sensitive to temperature, causing a dramatic increase in the fading rate at 55 degrees C. These observations show how important the electrode interactions (cross-talk) can be for the overall cell behavior. Additionally, internal resistance measurements showed that the positive electrode was mainly responsible for the increase of resistance over cycling, especially at 55 degrees C. Surface characterization showed that LNMO surface layers were relatively thin when compared with the solid electrolyte interphase (SEI) on LTO. The SEI on LTO does not contribute significantly to overall internal resistance even though these films are relatively thick. X-ray absorption near-edge spectroscopy measurements showed that the Mn and Ni observed on the anode were not in the metallic state; the presence of elemental metals in the SEI is therefore not implicated in the observed fading mechanism through a simple reduction process of migrated metal cations.

  • 5.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Rapid Capacity Fading of LNMO-LTO Lithium-ion Cells at Elevated Temperature2017Conference paper (Other academic)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O4 (LNMO) has an average operating potential around 4.7 V vs. Li/Li+ and a gravimetric charge capacity of 146 mAh/g making it a promising high energy density positive electrode for Li-ion batteries. Additionally, the 3-D lithium transport paths available in the spinel structure enables fast diffusion kinetics, making it suitable for power applications [1]. However, the material displays large instability during cycling, especially at elevated temperatures. Therefore, significant research efforts have been undertaken to better understand and improve this electrode material.

    Electrolyte (LiPF6 in organic solvents) oxidation and transition metal dissolution are often considered as the main problems [2] for the systems based on this cathode material. These can cause a variety of problems (in different parts of the cell) eventually increasing internal cell resistance, causing active mass loss and decreasing the amount of cyclable lithium.

    Among these issues, cyclable lithium loss cannot be observed in half cells since lithium metal will provide almost unlimited capacity. Being a promising full cell chemistry for high power applications, there has also been a considerable interest on LNMO full cells with Li4Ti5O12 (LTO) used as the negative electrode. For this chemistry, for an optimized cell, quite stable cycling for >1000 cycles has been reported at room temperature while fast fading is still present at 55 °C [3]. This difference in performance (RT vs. 55 °C) is beyond most expectations and likely does not follow any Arrhenius-type of trend.

    In this study, a comprehensive analysis of LNMO-LTO cells has been performed at different temperatures (RT, 40 °C and 55 °C) to understand the underlying reasons behind stable cycling at room temperature and rapid fading at 55 °C. For this purpose, testing was made on regular cells (Figure 1a), 3-electrode cells (Figure 1b) and back-to-back cells [4] (Figure 1c). Electrode interactions (cross-talk) have been shown to exist in the LTO-LNMO system [5] and back-to-back cells have therefore been used to observe fading under conditions where cross-talk is impossible [4]. Galvanostatic cycling combined with short-duration intermittent current interruptions [6] was performed in order to separately observe changes in internal resistance for LNMO and LTO electrodes in a full cell. Ex-situ characterization of electrodes have also been performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES).

    Our findings show how important the electrode interactions can be in full cells, as a decrease in lithium inventory was shown to be the major factor for the observed capacity fading at elevated temperature. In this presentation, the effect of other factors – active mass loss and internal cell resistance – will be discussed together with the consequences of cross-talk.

    References

    [1] A. Kraytsberg et al. Adv. Energy Mater., vol. 2, pp. 922–939,2012.

    [2] J. H. Kim et al., ChemPhysChem, vol. 15, pp. 1940–1954, 2014.

    [3] H. M. Wu et al. J. E. Soc., vol. 156, pp. A1047–A1050, 2009.

    [4] S. R. Li et al., J. E. Soc., vol. 160, no. 9, pp. A1524–A1528, 2013.

    [5] Dedryvère et al. J. Phys. C., vol. 114 (24), pp. 10999–11008, 2010.

    [6] M. J. Lacey, ChemElectroChem, pp. 1–9, 2017.

  • 6.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen AG.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Capacity Loss in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures2017Conference paper (Refereed)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O(LNMO) is an attractive positive electrode due to its operating voltage around 4.7 V (vs. Li/Li+) arising from the Ni2+/Ni4+ redox couple. In addition to high voltage operation, a second advantage of this material is its capability for fast lithium diffusion kinetics through 3-D transport paths in the spinel structure. However, the electrode material is prone to side reactions with conventional electrolytes, including electrolyte decomposition and transition metal dissolution, especially at elevated temperatures1. It is important to understand how undesired reactions originating from the high voltage spinel affect the aging of different cell components and overall cycle life. Half-cells are usually considered as an ideal cell configuration in order to get information only from the electrode of interest. However, this cell configuration may not be ideal to understand capacity fading for long-term cycling and the assumption of ‘stable’ lithium negative electrode may not be valid, especially at high current rates2. Also, among the variety of capacity fading mechanisms, the loss of “cyclable” lithium from the positive electrode (or gain of lithium from electrolyte into the negative electrode) due to side reactions in a full-cell can cause significant capacity loss. This capacity loss is not observable in a typical half-cell as a result of an excessive reserve of lithium in the negative electrode.

    In a full-cell, it is desired that the negative electrode does not contribute to side reactions in a significant way if the interest is more on the positive side. Among candidates on the negative side, Li4Ti5O12 (LTO) is known for its stability since its voltage plateau (around 1.5 V vs. Li/Li+) is in the electrochemical stability window of standard electrolytes and it shows a very small volume change during lithiation. These characteristics make the LNMO-LTO system attractive for a variety of applications (e.g. electric vehicles) but also make it a good model system for studying aging in high voltage spinel-based full cells.

    In this study, we aim to understand the fundamental mechanisms resulting in capacity fading for LNMO-LTO full cells both at room temperature and elevated temperature (55°C). It is known that electrode interactions occur in this system due to migration of reaction products from LNMO to the LTO side3, 4. For this purpose, three electrode cells have been cycled galvanostatically with short-duration intermittent current interruptionsin order to observe internal resistance for both LNMO and LTO electrodes in a full cell, separately. Change of voltage curves over cycling has also been observed to get an insight into capacity loss. For comparison purposes, back-to-back cells (a combination of LNMO and LTO cells connected electrically by lithium sides) were also tested similarly. Post-cycling of harvested electrodes in half cells was conducted to determine the degree of capacity loss due to charge slippage compared to other aging factors. Surface characterization of LNMO as well as LTO electrodes after cycling at room temperature and elevated temperature has been done via SEM, XPS, HAXPES and XANES.

    References

    1. A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater., vol. 2, pp. 922–939, 2012.

    2. Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. Solid State Ionics, 148(3), 405-416, 2002.

    3. Li et al., Journal of The Electrochemical Society, 160 (9) A1524-A1528, 2013.

    4. Aktekin et al., Journal of The Electrochemical Society 164.4: A942-A948. 2017.

    5. Lacey, M. J., ChemElectroChem. Accepted Author Manuscript. doi:10.1002/celc.201700129, 2017. 

  • 7.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Massel, Felix
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Ahmadi, Majid
    Delft Univ Technol, Fac Appl Sci, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands..
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany..
    Marzano, Fernanda
    Scania CV AB, SE-15187 Sodertalje, Sweden..
    Duda, Laurent
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Content2020In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 3, no 6, p. 6001-6013Article in journal (Refereed)
    Abstract [en]

    The crystal structure of LiNi0.5O4 (LNMO) can adopt either low-symmetry ordered (Fd (3) over barm) or high-symmetry disordered (P4(3)32) space group depending on the synthesis conditions. A majority of published studies agree on superior electrochemical performance of disordered LNMO, but the underlying reasons for improvement remain unclear due to the fact that different thermal history of the samples affects other material properties such as oxygen content and particle morphology. In this study, ordered and disordered samples were prepared with a new strategy that renders samples with identical properties apart from their cation ordering degree. This was achieved by heat treatment of powders under pure oxygen atmosphere at high temperature with a final annealing step at 710 degrees C for both samples, followed by slow or fast cooling. Electrochemical testing showed that cation disordering improves the stability of material in charged (delithiated) state and mitigates the impedance rise in LNMO parallel to LTO (Li4Ti5O12) and LNMO parallel to Li cells. Through X-ray photoelectron spectroscopy (XPS), thicker surface films were observed on the ordered material, indicating more electrolyte side reactions. The ordered samples also showed significant changes in the Ni 2p XPS spectra, while the generation of ligand (oxygen) holes was observed in the Ni-O environment for both samples using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Moreover, high-resolution transmission electron microscopy (HRTEM) images indicated that the ordered samples show a decrease in ordering near the particle surface after cycling and a tendency toward rock-salt-like phase transformations. These results show that the structural arrangement of Mn/Ni (alone) has an effect on the surface and "nearsurface" properties of LNMO, particularly in delithiated state, which is likely connected to the bulk electronic properties of this electrode material.

    Download full text (pdf)
    FULLTEXT01
  • 8.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Smith, Ronald I.
    Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Harwell Campus, Didcot OX11 0QX, Oxon, England.
    Sörby, Magnus H.
    Inst Energy Technol, Dept Neutron Mat Characterizat, POB 40, NO-2027 Kjeller, Norway.
    Marzano, Fernanda Lodi
    Scania CV AB, SE-15187 Sodertalje, Sweden.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brant, William
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO): In Situ Neutron Diffraction and Performance in Li Ion Full Cells2019In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 2, no 5, p. 3323-3335Article in journal (Refereed)
    Abstract [en]

    Lithium ion cells utilizing LiNi0.5Mn1.5O4 (LNMO) as the positive electrode are prone to fast capacity fading, especially when operated in full cells and at elevated temperatures. The crystal structure of LNMO can adopt a P4(3)32 (cation-ordered) or Fd (3) over barm (disordered) arrangement, and the fading rate of cells is usually mitigated when samples possess the latter structure. However, synthesis conditions leading to disordering also lead to oxygen deficiencies and rock-salt impurities and as a result generate Mn3+. In this study, in situ neutron diffraction was performed on disordered and slightly Mn-rich LNMO samples to follow cation ordering-disordering transformations during heating and cooling. The study shows for the first time that there is not a direct connection between oxygen release and cation disordering, as cation disordering is observed to start prior to oxygen release when the samples are heated in a pure oxygen atmosphere. This result demonstrates that it is possible to tune disordering in LNMO without inducing oxygen deficiencies or forming the rock-salt impurity phase. In the second part of the study, electrochemical testing of samples with different degrees of ordering and oxygen content has been performed in LNMO vertical bar vertical bar LTO (Li4Ti5O12) full cells. The disordered sample exhibits better performance, as has been reported in other studies; however, we observe that all cells behave similarly during the initial period of cycling even when discharged at a 10 C rate, while differences arise only after a period of cycling. Additionally, the differences in fading rate were observed to be time-dependent rather than dependent on the number of cycles. This performance degradation is believed to be related to instabilities in LNMO at higher voltages, that is, in its lower lithiation states. Therefore, it is suggested that future studies should target the individual effects of ordering and oxygen content. It is also suggested that more emphasis during electrochemical testing should be placed on the stability of samples in their delithiated state.

  • 9.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Zipprich, Wolfgang
    Volkswagen AG, Wolfsburg, Germany..
    Tengstedt, Carl
    Scania CV AB, Södertalje..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The Effect of the Fluoroethylene Carbonate Additive in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells2017In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 4, p. A942-A948Article in journal (Refereed)
    Abstract [en]

    The effect of the electrolyte additive fluoroethylene carbonate (FEC) for Li-ion batteries has been widely discussed in literature in recent years. Here, the additive is studied for the high-voltage cathode LiNi0.5Mn1.5O4 (LNMO) coupled to Li4Ti5O12 (LTO) to specifically study its effect on the cathode side. Electrochemical performance of full cells prepared by using a standard electrolyte (LP40) with different concentrations of FEC (0, 1 and 5 wt%) were compared and the surface of cycled positive electrodes were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that addition of FEC is generally of limited use for this battery system. Addition of 5 wt% FEC results in relatively poor cycling performance, while the cells with 1 wt% FEC showed similar behavior compared to reference cells prepared without FEC. SEM and XPS analysis did not indicate the formation of thick surface layers on the LNMO cathode, however, an increase in layer thickness with increased FEC content in the electrolyte could be observed. XPS analysis on LTO electrodes showed that the electrode interactions between positive and negative electrodes occurred as Mn and Ni were detected on the surface of LTO already after 1 cycle. (C) The Author(s) 2017. Published by ECS. All rights reserved.

    Download full text (pdf)
    fulltext
  • 10.
    Alipour, Mohammad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Tavallaey, Shiva Sander
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden.;Sch Sci KTH, Dept Mech, SE-10044 Stockholm, Sweden..
    Andersson, Anna M.
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Improved Battery Cycle Life Prediction Using a Hybrid Data-Driven Model Incorporating Linear Support Vector Regression and Gaussian2022In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 23, no 7, article id e202100829Article in journal (Refereed)
    Abstract [en]

    The ability to accurately predict lithium-ion battery life-time already at an early stage of battery usage is critical for ensuring safe operation, accelerating technology development, and enabling battery second-life applications. Many models are unable to effectively predict battery life-time at early cycles due to the complex and nonlinear degrading behavior of lithium-ion batteries. In this study, two hybrid data-driven models, incorporating a traditional linear support vector regression (LSVR) and a Gaussian process regression (GPR), were developed to estimate battery life-time at an early stage, before more severe capacity fading, utilizing a data set of 124 battery cells with lifetimes ranging from 150 to 2300 cycles. Two type of hybrid models, here denoted as A and B, were proposed. For each of the models, we achieved 1.1 % (A) and 1.4 % (B) training error, and similarly, 8.3 % (A) and 8.2 % (B) test error. The two key advantages are that the error percentage is kept below 10 % and that very low error values for the training and test sets were observed when utilizing data from only the first 100 cycles.The proposed method thus appears highly promising for predicting battery life during early cycles.

    Download full text (pdf)
    fulltext
  • 11.
    Alipour, Mohammad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Yin, Litao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tavallaey, Shiva Sander
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden.;KTH, Dept Mech, Sch Sci, SE-10044 Stockholm, Sweden..
    Andersson, Anna Mikaela
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A surrogate-assisted uncertainty quantification and sensitivity analysis on a coupled electrochemical-thermal battery aging model2023In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 579, article id 233273Article in journal (Refereed)
    Abstract [en]

    High-fidelity physics-based models are required to comprehend battery behavior at various operating condi-tions. This paper proposes an uncertainty quantification analysis on a coupled electrochemical-thermal aging model to improve the reliability of a battery model, while also investigating the impact of parametric model uncertainties on battery voltage, temperature, and aging. The coupled model's high computing cost, however, is a significant barrier to perform uncertainty quantification (UQ) and sensitivity analysis (SA). To address this problem, a surrogate model - i.e, by simulating the outcome of a quantity of interest that cannot be easily computed or measured - based on the Gaussian process regression (GPR) theory and principle component analysis (PCA) is built, using a small collection of finite element simulation results as synthetic training data. In total, 43 variable electrochemical-thermal parameters as well as 13 variable aging parameters are studied and estimated. Moreover, the trained surrogate model is also used in the parameterization of the electrochemical and thermal models. The results show that the uncertainties in the input parameters significantly affect the estimations of battery voltage, temperature, and aging. Based on this sensitivity analysis, the most influential parameters affecting the above mentioned battery outputs are reported. This approach is thereby helpful for developing robust and reliable high-fidelity battery aging models with potential applications in digital twins as well as for synthetic data generation.

    Download full text (pdf)
    fulltext
  • 12.
    Andersson, Edvin K. W.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Wu, Liang-Ting
    Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan..
    Bertoli, Luca
    Dipartimento Chim Materiali & Ingn Chim Giulio Nat, Dipartimento Chim Mat & Ingn Chim Giulio Natta, Via Luigi Mancinelli 7, I-20131 Milan, Italy..
    Weng, Yi-Chen
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Friesen, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Elbouazzaoui, Kenza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bloch, Sophia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Ovsyannikov, Ruslan
    Helmholtz Zentrum Berlin Mat & Energie, Inst Methods & Instrumentat Synchrotron Radiat Res, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Giangrisostomi, Erika
    Helmholtz Zentrum Berlin Mat & Energie, Inst Methods & Instrumentat Synchrotron Radiat Res, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jiang, Jyh-Chiang
    Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan..
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Initial SEI formation in LiBOB-, LiDFOB- and LiBF4-containing PEO electrolytes2024In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 12, no 15, p. 9184-9199Article in journal (Refereed)
    Abstract [en]

    A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs – polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) – using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.

    Download full text (pdf)
    fulltext
  • 13.
    Andersson, Rassmus
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    See, Jennifer
    Brewer Sci, Rolla, MO 65401 USA..
    Flaim, Tony D.
    Brewer Sci, Rolla, MO 65401 USA..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Designing Polyurethane Solid Polymer Electrolytes for High-Temperature Lithium Metal Batteries2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 1, p. 407-418Article in journal (Refereed)
    Abstract [en]

    Potentially high-performance lithium metal cells in extreme high-temperature electrochemical environments is a challenging but attractive battery concept that requires stable and robust electrolytes to avoid severely limiting lifetimes of the cells. Here, the properties of tailored polyester and polycarbonate diols as the soft segments in polyurethanes are investigated and electrochemically evaluated for use as solid polymer electrolytes in lithium metal batteries. The polyurethanes demonstrate high mechanical stability against deformation at low flow rates and moreover at temperatures up above 100 degrees C, enabled by the hard urethane segments. The results further indicate transferrable ion transport properties of the pure polymers when incorporated as the soft segments in the polyurethanes, offering designing opportunities of the polyurethane by tuning the soft segment ratio and composition. Long-term electrochemical cycling of polyurethane-containing cells in lithium metal batteries at 80 degrees C proves the stability at elevated temperatures as well as the compatibility with lithium metal with stable cycling maintained after 2000 cycles.

    Download full text (pdf)
    fulltext
  • 14.
    Asfaw, Habtom D.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Kotronia, Antonia
    Department of Chemistry, University of Southampton, Southampton, UK.
    Garcia-Araez, Nuria
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Charting the course to solid-state dual-ion batteries2023In: Carbon Energy, ISSN 2637-9368, article id e425Article, review/survey (Refereed)
    Abstract [en]

    An electrolyte destined for use in a dual-ion battery (DIB) must be stable at the inherently high potential required for anion intercalation in the graphite electrode, while also protecting the Al current collector from anodic dissolution. A higher salt concentration is needed in the electrolyte, in comparison to typical battery electrolytes, to maximize energy density, while ensuring acceptable ionic conductivity and operational safety. In recent years, studies have demonstrated that highly concentrated organic electrolytes, ionic liquids, gel polymer electrolytes (GPEs), ionogels, and water-in-salt electrolytes can potentially be used in DIBs. GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency, energy density, and long-term cycle life of DIBs. Furthermore, GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance. In this review, we highlight the latest advances in the application of different electrolytes in DIBs, with particular emphasis on GPEs.

    Download full text (pdf)
    fulltext
  • 15.
    Benitez, Almudena
    et al.
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Amaro-Gahete, Juan
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Organ, Cordoba 14071, Spain..
    Chien, Yu-Chuan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Caballero, Alvaro
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Morales, Julian
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host2022In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 154, article id 111783Article in journal (Refereed)
    Abstract [en]

    While biomass waste is generated in abundance, these materials and their production processes are generally environmentally friendly, low cost, non-hazardous and easily scalable. These advantages position biomass materials as excellent candidates to solve problems of environmental pollution, primarily by substitution of less sustainable counterparts. This also applies to energy storage systems such as batteries, where several components have large environmental impacts. Lithium-Sulfur batteries have, in this context, been extensively researched to cope with the growing energy needs, and are expected to foresee a growing commercialization. Specifically, advances in the use of renewable cathode materials for Li-S batteries is a field that has been widely addressed in recent years, with carbonaceous materials (C) and/or activated carbons (AC), obtained from biomass, being intensively studied. We here reviewed this field through a classification and discussion of carbonaceous materials from natural waste according to the type of biomass: (1) woody, (2) herbaceous and agricultural, (3) aquatic, (4) animal and human, and (5) contaminated and industrial biomass waste materials. In addition, all porous carbons or activated carbons used as sulfur hosts have been exhaustively evaluated in terms of origin, synthesis parameters, physical properties, and electrochemical performance in Li-S batteries. The purpose is to provide a general description of the progress in the preparation of carbons from biomass resources, examine the textural and electrochemical properties of these materials focusing on the last decade, and also to present an outlook for future research in this developing area.

    Download full text (pdf)
    fulltext
  • 16.
    Benitez, Almudena
    et al.
    Univ Cordoba, Inst Univ Nanoquim, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A renaissance for lithium-sulfur batteries through low-cost, efficient, and sustainable biomass cathodes2022In: One Earth, ISSN 2590-3330, E-ISSN 2590-3322, Vol. 5, no 3, p. 224-226Article in journal (Other academic)
    Abstract [en]

    Although lithium-ion batteries face material sustainability issues, one promising alternative-lithium-sulfur (Li-S) batteries-suffers from destructive chemical reactions. Recently in Chem, Hou et al. proposed one viable solution: an encapsulating lithium polysulfide electrolyte. We discuss this advance and the potential role of biomass as an alternative sustainable material for Li-S battery cathodes.

  • 17.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mogensen, Ronnie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim Melander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications2020In: ACS Applied Polymer Materials, ISSN 2637-6105, Vol. 2, no 2, p. 939-948Article in journal (Refereed)
    Abstract [en]

    In this paper we present a solid polymer electrolyte (SPE) that uniquely combines ionic conductivity and mechanical robustness. This is achieved with a diblock copolymer poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate). The SPE with 16.7 wt% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) showed the highest ionic conductivity (9.1×10−6 S cm−1 at 30 °C) and apparent transference number (T+) of 0.64 ± 0.04. Due to the employment of the benzyl methacrylate hard-block, this SPE is mechanically robust with a storage modulus (E') of 0.2 GPa below 40 °C, similar to polystyrene, thus making it a suitable material also for load-bearing constructions. The cell Li|SPE|LiFePO4 is able to cycle reliably at 30 °C for over 300 cycles. The promising mechanical properties, desired for compatibility with Li-metal, together with the fact that BCT is a highly reliable electrolyte material makes this SPE an excellent candidate for next-generation all-solid-state batteries.

    Download full text (pdf)
    fulltext
  • 18.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hedman, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Sångeland, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization2018In: RSC Advances, E-ISSN 2046-2069, Vol. 8, no 30, p. 16716-16725Article in journal (Refereed)
    Abstract [en]

    In this work, three types of polymers based on epsilon-caprolactone have been synthesized: poly(epsilon-caprolactone), polystyrene-poly(epsilon-caprolactone), and polystyrene-poly(epsilon-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane) sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li vertical bar SPE vertical bar LiFePO4 cell that cycled at 40 degrees C gave a discharge capacity of about 140 mA h g(-1) at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

    Download full text (pdf)
    fulltext
  • 19.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Mogensen, Ronnie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Guiomar, Hernández
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Mechanically Robust and Highly Conductive Di-Block Copolymers as Solid Polymer Electrolytes for Room Temperature Li-ion Batteries2018Conference paper (Other academic)
    Abstract [en]

    Alternative solid polymer electrolytes (SPEs) hosts to the archetype poly(ethylene oxide) are gaining attention thanks to their appealing properties, such as higher cation transport number, thermal stability and electrochemical stability [1]. In addition, high mechanical stability is required in order to integrate easy-to-use materials into flexible or ‘structural’ batteries [2, 3].

     In this work, a solid polymer electrolyte (SPE) featuring high ionic conductivity and mechanical robustness at room temperature is presented. The SPE consists of a di-block copolymer, poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate) (BCT), mixed with different loadings of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The highest ionic conductivity achieved for these SPEs was found with 16.7 wt% LiTFSI loading (BCT17), reaching 9.1 x 10-6 S cm-1 at 30 °C. The limited current fraction (F+) for the BCT17 electrolyte was calculated to be 0.64 with the Bruce-Vincent method. Furthermore, dynamic mechanical analysis showed a storage modulus (E’) of 0.2 GPa below 40 °C and 1 MPa above 50 °C. These results indicate that BCT with LiTFSI is a competitive electrolyte, combining high ionic conductivity and modulus at ambient temperatures.

     LiFePO4|BCT17|Li half-cells showed good cycling performance at 60 °C. At 30 °C, where the SPE possessed significantly higher modulus, decent cell performance could still be achieved after several optimization steps. These included incorporating a SPE as binder, and infiltration cast the SPE on the electrode to maximize the contact between both components, thereby improving the interfacial contact and decreasing the cell resistance and overpotential when cycling the battery device.

     References

    [1] J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell. Prog Polym Sci, (2018). DOI: 10.1016/j.progpolymsci.2017.12.004.

    [2] J.F. Snyder, R.H. Carter, E.D. Wetzel. Chem Mater, 19 (2007) 3793-801.

    [3] W.S. Young, W.F. Kuan, Thomas H. Epps. J Polym Sci, Part B: Polym Phys, 52 (2014) 1-16.

  • 20.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Rubatat, Laurent
    CNRS/UNIV Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l´ Environnement et les Materiaux, Pau, France.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries2018In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 321, p. 55-61Article in journal (Refereed)
    Abstract [en]

    A triblock copolymer of benzyl methacrylate and oligo(ethylene glycol) methyl ether methacrylate was polymerized to form the general structure PBnMA-POEGMA-PBnMA, using atom transfer radical polymerization (ATRP). The block copolymer (BCP) was blended with lithium bis(trifluoro methylsulfonate) (LiTFSI) to form solid polymer electrolytes (SPEs). AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 °C to 90 °C. Small-angle X-ray scattering (SAXS) was used to study the morphology of the electrolytes in the temperature interval 30 °C to 150 °C. By using benzyl methacrylate as a mechanical block it was possible to tune the microphase separation by the addition of LiTFSI, as proven by SAXS. By doing so the ionic conductivity increased to values higher than ones measured on a methyl methacrylate triblock copolymer-based electrolyte in the mixed state, which was investigated in an earlier paper by our group. A Li|SPE|LiFePO4 half-cell was constructed and cycled at 60 °C. The cell produced a discharge capacity of about 100 mAh g−1 of LiFePO4 at C/10, and the half-cell cycled for more than 140 cycles.

    Download full text (pdf)
    fulltext
  • 21.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Rubatat, Laurent
    Univ Pau & Pays Adour, CNRS, Inst Sci Analyt & Physicochim Environm & Mat, UMR5254, F-64000 Pau, France.
    Mogensen, Ronnie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance2017In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 131, p. 234-242Article in journal (Refereed)
    Abstract [en]

    A series of deuterated tri-block copolymers with the general structure d(8)-PMMA-POEGMA-d(8)-PMMA, with variation in d(8)-PMMA chain length, were synthesized using sequential controlled radical polymerization (ATRP). Solid polymer electrolytes (SPEs) were produced by blending tri-block copolymers and lithium bis(trifluoro methylsulfonate) (LiTFSI). Small-angle neutron scattering (SANS) was used to study the bulk morphology of the deuterated tri-block copolymer electrolyte series at 25 degrees C, 60 degrees C and 95 degrees C. The lack of a second T-g in DSC analysis together with modelling with the random phase approximation model (RPA) confirmed that the electrolytes are in the mixed state, with negative Flory-Huggins interaction parameters. AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 degrees C-90 degrees C, and a battery device was constructed to evaluate a 25 wt% d(8)-PMMA electrolyte. The Li | SPE | LiFePO4 cell cycled at 60 degrees C, giving a discharge capacity of 120 mAh g(-1), while cyclic voltammetry showed that the SPE was stable at 60 degrees C.

  • 22.
    Bergman, Martin
    et al.
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Sun, Bing
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden..
    Johansson, Patrik
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis(trifluoromethanesulfonimide)2015In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 175, p. 96-103Article in journal (Refereed)
    Abstract [en]

    For successful hybridization of heavy vehicles, high temperature batteries might be the solution. Here, high temperature solid polymer electrolytes (SPE's) based on different ratios of poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA), with LiTFSI salt (at a fixed ether oxygen (EO):Li ratio of 20:1) have been prepared and investigated. The copolymers comprise PMMA backbones with grafted PEGMA side-chains containing 9 EO units. The SPE systems were characterized using Raman spectroscopy, broadband dielectric spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and electrochemical cycling in prototype cells, with a particular focus on the 83 wt% PEGMA system. The electrolytes have good thermal stabilities and dissociate the LiTFSI salt easily, while at the same time maintaining low glass transition temperatures (T-g's). Depending on the polymeric structure, ionic conductivities >1 mS cm(-1) at 110 degrees C are detected, thus providing ion transport properties for a broad range of electrochemical applications. Prototype Li vertical bar polymer electrolyte vertical bar LiFePO4 cells utilizing the SPE at 60 degrees C showed surprisingly low capacities (<20 mA h g(-1) LiFePO4), which could be due to poor electrode/electrolyte contacts.

  • 23.
    Bertoli, Luca
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. Politecn Milan, Dipartimento Chim Mat & Ingn Chim Giulio Natta, Via Luigi Mancinelli 7, I-20131 Milan, Italy..
    Bloch, Sophia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Andersson, Edvin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Magagnin, Luca
    Politecn Milan, Dipartimento Chim Mat & Ingn Chim Giulio Natta, Via Luigi Mancinelli 7, I-20131 Milan, Italy..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Combination of solid polymer electrolytes and lithiophilic zinc for improved plating/stripping efficiency in anode-free lithium metal solid-state batteries2023In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 464, article id 142874Article in journal (Refereed)
    Abstract [en]

    Anode-free lithium metal batteries and solid-state batteries represent some of the most promising alternatives to the current Li-ion technology. The possibility to reach high energy density, due to the exploitation of Li-metal plating/stripping and the elimination of excess anode material, motivate the interest at both academic and in-dustrial levels. Despite these favourable properties, the use of Li-metal has always been extremely challenging and inefficient. This becomes particularly relevant in anode-free systems where no excess of lithium is introduced in the cell. The efficiency and quality of the deposition process is therefore of utmost importance. To optimize the Li-metal plating process, a combination of solid polymer electrolytes and a lithiophilic metal is applied herein, using in situ deposition of a zinc interlayer from a PEO-based SPE to modify the Cu current collector. Im-provements in specific capacity, coulombic efficiency and cyclability with the addition of zinc as lithiophilic metal is verified in full anode-free solid-state Li-batteries, while plating/stripping in half-cell configuration provides additional insights into the relevant mechanisms. The exploitation of the in situ deposited lithiophilic layer reveals an innovative and practical optimization strategy for the future of anode-free solid-state batteries.

    Download full text (pdf)
    fulltext
  • 24.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries2017In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 13, p. A3054-A3059Article in journal (Refereed)
    Abstract [en]

    The cycle life of LiNi1/3Co1/3Mn1/3O2 (NMC) based cells are significantly influenced by the choice of the negative electrode. Electrochemical testing and post mortem surface analysis are here used to investigate NMC electrodes cycled vs. either Li-metal, graphite or Li4Ti5O12 (LTO) as negative electrodes. While NMC-LTO and NMC-graphite cells show small capacity fading over 200 cycles, NMC-Li-metal cell suffers from rapid capacity fading accompanied with an increased voltage hysteresis despite the almost unlimited access of lithium. X-ray absorption near edge structure (XANES) results show that no structural degradation occurs on the positive electrode even after >200 cycles, however, X-ray photoelectron spectroscopy (XPS) results shows that the composition of the surface layer formed on the NMC cathode in the NMC-Li-metal cell is largely different from that of the other NMC cathodes (cycled in the NMC-graphite or NMC-LTO cells). Furthermore, it is shown that the surface layer thickness on NMC increases with the number of cycles, caused by continuous electrolyte degradation products formed at the Li-metal negative electrode and then transferred to NMC positive electrode.

    Download full text (pdf)
    fulltext
  • 25.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The influence of counter electrode on the capacity fading in LiNi0.33Mn0.33Co0.33O2-based Li-ion battery cells2017Conference paper (Other academic)
    Download full text (pdf)
    fulltext
  • 26.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Göttlinger, Mara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Investigation of dimethyl carbonate and propylene carbonate mixtures for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 cells2019In: ChemElectroChem, E-ISSN 2196-0216, Vol. 6, no 13, p. 3429-3436Article in journal (Refereed)
    Abstract [en]

    It has recently been shown that ethylene carbonate (EC) experience poor stability at high potentials in lithium-ion batteries, and development of electrolytes without EC, not least using ethyl methyl carbonate (EMC), has therefore been suggested in order to improve the capacity retention. In this context, we here explore another alternative electrolyte system consisting of propylene carbonate (PC) and dimethyl carbonate (DMC) mixtures in NMC-LTO (LiNi0.6Mn0.2Co0.2O2, Li4Ti5O12) cells cycled up to 2.95 V. While PC experience wettability problems and DMC has difficulties dissolving LiPF6 salt, blends between these could possess complementary properties. The electrolyte blend showed superior cycling performance at sub-zero temperatures compared to EC-containing counterparts. At 30 degrees C, however, the PC-DMC electrolyte did not show any major improvement in electrochemical properties for the NMC-LTO cell chemistry. Photoelectron spectroscopy measurements showed that thin surface layers were detected on both NMC (622) and LTO electrodes in all investigated electrolytes. The results suggest that both PC and EC will react on the electrodes, but with EC forming thinner layers comprising more carbonates. Moreover, the electrochemical stability at high electrochemical potentials is similar for the studied electrolytes, which is surprising considering that most are free from the reactive EC component.

  • 27.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Göttlinger, Mara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Sulfolane-Based Ethylene Carbonate-Free Electrolytes for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 Batteries2020In: Batteries & Supercaps, E-ISSN 2566-6223, Vol. 3, no 2, p. 201-207Article in journal (Refereed)
    Abstract [en]

    Most electrolytes in today's lithium-ion batteries contain a large proportion of ethylene carbonate (EC) mixed with other alkyl carbonate-based solvents. EC has, however, been shown to be unstable at the high potentials at which several novel cathode materials are electrochemically active. Here, different mixtures of sulfolane and DMC are investigated in this context. The electrochemical stability is explored in addition to galvanostatic cycling of LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 (NMC-LTO) cells. The measurement of the ionic conductivity showed that mixing 25 % sulfolane into DMC improved the electrolyte properties as compared to pure DMC, making the conductivity similar to EC:DEC electrolytes and therefore fully functional. Moreover, the addition of sulfolane slightly enhanced the capacity retention, likely caused by formation of thinner and more stable surface layers on the LTO electrodes as determined by X-ray photoelectron spectroscopy (XPS). The cycling performance is especially improved for sulfolane-based electrolytes during cycling at sub-zero temperatures.

  • 28.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The influence of counter electrode on the capacity fading in LiNi0.33Mn0.33Co0.33O2-based Li-ion battery cells2017Conference paper (Other academic)
  • 29.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Naylor, Andrew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brant, William
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Temperature dependence of electrochemical degradation in LiNi1/3Mn1/3Co1/3O2/Li4Ti5O12 cells2019In: Energy Technology, ISSN 2194-4288, Vol. 7, no 9, article id 1900310Article in journal (Refereed)
    Abstract [en]

    Aging mechanisms in lithium‐ion batteries are dependent on the operational temperature, but the detailed mechanisms on what processes take place at what temperatures are still lacking. The electrochemical performance and capacity fading of the common cell chemistry LiNi1/3Mn1/3Co1/3O2 (NMC)/Li4Ti5O12 (LTO) pouch cells are studied at temperatures 10, 30, and 55 °C. The full cells are cycled with a moderate upper cutoff potential of 4.3 V versus Li+/Li. The electrode interfaces are characterized postmortem using photoelectron spectroscopy techniques (soft X‐ray photoelectron spectroscopy [SOXPES], hard X‐ray photoelectron spectroscopy [HAXPES], and X‐ray absorption near edge structure [XANES]). Stable cycling at 30 °C is explained by electrolyte reduction forming a stabilizing interphase, thereby preventing further degradation. This initial reaction, between LTO and the electrolyte, seems to be beneficial for the NMC–LTO full cell. At 55 °C, continuous electrolyte reduction and capacity fading are observed. It leads to the formation of a thicker surface layer of organic species on the LTO surface than at 30 °C, contributing to an increased voltage hysteresis. At 10 °C, large cell‐resistances are observed, caused by poor electrolyte conductivity in combination with a relatively thicker and LixPFy‐rich surface layer on LTO, which limit the capacity.

  • 30.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Wikner, Evelina
    Chalmers University of Technology, Gothenburg, Sweden.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Influence of state-of-charge in commercial LiNi0.33Mn0.33Co0.33O2/LiMn2O4-graphite cells analyzed by synchrotron-based photoelectron spectroscopy2018In: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 15, p. 172-180Article in journal (Refereed)
    Abstract [en]

    Degradation mechanisms in 26 Ah commercial Li-ion battery cells comprising graphite as the negative electrode and mixed metal oxide of LiMn2O4 (LMO) and LiNi1/3Mn1/3Co1/3O2 (NMC) as the positive electrode are here investigated utilising extensive cycling at two different state-of-charge (SOC) ranges, 10–20% and 60–70%, as well as post-mortem analysis. To better analyze these mechanisms electrochemically, the cells were after long-term cycling reassembled into laboratory scale “half-cells” using lithium metal as the negative electrode, and thereafter cycled at different rates corresponding to 0.025 mA/cm2 and 0.754 mA/cm2. The electrodes were also analyzed by synchrotron-based hard x-ray photoelectron spectroscopy (HAXPES) using two different excitation energies to determine the chemical composition of the interfacial layers formed at different depth on the respective electrodes. It was found from the extensive cycling that the cycle life was shorter for the cell cycled in the higher SOC range, 60–70%, which is correlated to findings of an increased cell resistance and thickness of the SEI layer in the graphite electrode as well as manganese dissolution from the positive electrode.

  • 31.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Wikner, Evelina
    Division of Electric Power Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Wachtler, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The influence of temperature and SOC ranges of ageing in commercial  LiNi0.33Mn0.33Co0.33O2/LiMn2O4-graphite commercial cells2017Conference paper (Other academic)
  • 32.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A renaissance for Li-battery solid polymer electrolytes2015Conference paper (Other academic)
  • 33.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    EV batteries –challenges for power, capacity, lifetime, cost and sustainability2016Conference paper (Other academic)
  • 34.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Functionalized Polymer Electrolytes for Large and Small Li-Battery Applications: Experiments and Modelling2014Conference paper (Other academic)
  • 35.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Molecular Dynamics Simulations of Li ion and H-conduction in polymer electrolytes2010In: Polymer electrolytes: Fundamentals and applications / [ed] César Sequeira and Diogo Santos, Woodhead Publishing , 2010, p. 314-339Chapter in book (Other academic)
  • 36.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Organic Batteries2016Conference paper (Other academic)
  • 37.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ultrathin Solid Polymer Electrolytes for Microbatteries2012Conference paper (Other academic)
  • 38.
    Brandell, Daniel
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Ainla, A
    Liivat, Anti
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Aabloo, A
    Molecular dynamics simulations of Li- and Na-Nafion membranes2006In: SPIE--The International Society for Optical Engineering Vol 61680G: Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), 2006, p. 61680G-Conference paper (Refereed)
    Abstract [en]

    Molecular Dynamics (MD) techniques have been used to study the structure and dynamics of hydrated Li- and Na-Nafion membranes. The membranes were generated using a Monte Carlo-approach for Nafion 117 oligomers of Mw = 1100 and with water contents of 7.5 and 20 % by weight, equivalent to 5 and 15 water molecules per sulfonate group, respectively. After equilibration, local structural properties and dynamical features such as coordination, cluster stability, solvation and ion conductivity were studied. In a comparison between the two cationic systems, it is shown that the Na-Nafion system is more sensitive than Li-Nafion to the level of hydration, and also show higher ion conductivity. The ionic conductivity is shown to increase with higher level of hydration.

  • 39.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Ainla, Alar
    Liivat, Anti
    Aabloo, Alvo
    Molecular Dynamics Simulations of Li- and Na-Nafion Membranes2006In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 6168, p. 61680G-Article in journal (Refereed)
    Abstract
  • 40.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Björefors, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gustafsson, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Inorganic and organometallic materials for novel Li-ion batteries2013Conference paper (Other academic)
  • 41.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    How water-soluble bindercontrol the surface chemistry in Li-ion battery anodes2017Conference paper (Other academic)
  • 42.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tailoring the surface chemistry of Li-ion battery anodes through the use of water-soluble functional functional binders2017Conference paper (Other academic)
  • 43.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Joemetsa, Silver
    Kasemaegi, Heiki
    Aabloo, Alvo
    Molecular Dynamics modelling a small-molecule crystalline electrolyte: LiBF4(CH3O(CH2CH2O)(4)CH3)(0.5)2013In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 104, p. 33-40Article in journal (Refereed)
    Abstract [en]

    Molecular Dynamics techniques have been used to investigate structure and ion conductivity in the glyme-based crystalline electrolyte LiBF4(CH3O(CH2CH2O)(4)CH3)(0.5). The structure allows ionic transport in two distinct directions in the structure, y or z, resulting in anisotropic effects. MD simulations have also been carried out under external electric fields of 1-5 x 10(6) V/m, imposed in y- or z-directions, to induce ion transport on a short time-space scale at room temperature conditions. The MD simulations reproduce the experimentally determined structure satisfactorily, and also the unusually high cationic transport numbers (t(+) > 0.6). The simulations suggest that the ion transport is dominated by the Li-ions inside the glyme complexes, while the Li-ions outside comprise stable complexes with the generally immobilized anions. 

  • 44.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Karo, Jaanus
    Thomas, John O.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
     Modelling the Nafion® diffraction profile by molecular dynamics simulation2010In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 195, no 18, p. 5962-5965Article in journal (Refereed)
    Abstract [en]

    A diffraction profile is here derived from classical Molecular Dynamics (MD) simulation for the hydrated perfluorosulphonic acid fuel-cell membrane material Nafion at 363 K using a 76 angstrom x 76 angstrom x 76 angstrom box. The MD simulation reproduces the phase-separated nanoscale structure of Nafion and water channels. No specific structural features, such as a characteristic channel diameter, could be distinguished. Nevertheless, the envelope of the simulated diffraction profile based on 6000 MD "snapshots" reproduced well the key features of the experimental SAXS profile. This draws into questions previous interpretations of diffraction data for the Nafion (R) system which involve simplistic notions of channel- and cluster-diameter.

  • 45.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Kasemaegi, Heiki
    Tamm, Tarmo
    Aabloo, Alvo
    Molecular dynamics modeling the Li-PolystyreneTFSI/PEO blend2014In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 262, p. 769-773Article in journal (Refereed)
    Abstract [en]

    Classical Molecular Dynamics (MD) simulation studies of the single-ion conductor lithium poly(4-styrenesulfonyl(trifluorosulfonyl)imide) (PSTFSI) are for the first time presented here. The polymer electrolyte system comprises anions which are covalently bonded to a polymer backbone, thus rendering very high positive transport numbers. The studies here include a quantum chemistry based force field generation for this system and MD simulations of PSTFSI and a blend between PSTFSI and poly(ethylene oxide) (PEO). The simulations show that PEO acts as a very good solvent for the Li-ions, and that the transport properties are similar to Li-salt/PEO electrolytes at room temperature conditions, while pure PSTFSI has very little Li mobility at all. Realistic Li diffusion coefficients of similar to 1 x 10(-13) m(2) s(-1) were generated for the PSTFSI/PEO blend.

  • 46.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Kasemägi, Heiki
    Aabloo, Alvo
    Poly(ethylene oxide)-poly(butadiene) interpenetrated networks as electroactive polymers for actuators: a molecular dynamics study2010In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 55, no 4, p. 1333-1337Article in journal (Refereed)
    Abstract [en]

    Molecular dynamics (MD)techniques have been used to study ionic transport and coordination stability in an interpenetrating polymer (IPN) network used as electrolyte for actuator devices. The system consisted of poly(ethylene oxide) (PEO) and poly(butadiene) (PB) in a 80/20% weight ratio at a total polymer of 32%, immersed into propylene carbonate (PC) solutions of LiClO4. The system has been studied for five different concentrations of LiClO4 in PC: 0.25, 0.5, 0.75, 1.0 and 1.25 M, and with applied external electric fields of 0. 1 and 5 MV/m. It is shown that the polymer matrix has little involvement in the movement of ions and solvent, but that the polymer arrangement is important for the solvent phase nano-structure, and thereby influences the mobility. The mobility of PC is higher than of the other species in the system, but the charged species display higher mobility under external field. The field threshold level for conductivity processes is between 1 and 5 MV/m. It is argued that ion pairing, phase separation and coordination stability are important for the overall dynamic properties.

  • 47.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Kasemägi, Heiki
    Citérin, Johann
    Vidal, Frédéric
    Chevrot, Claude
    Aabloo, Alvo
    Molecular Dynamics studies of interpenetrated polymer networks for actuator devices2008In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 6927Article in journal (Refereed)
  • 48.
    Brandell, Daniel
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Klintenberg, M
    Aabloo, A
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Calculation of the optical absorption spectrum of ErCl3 in poly(ethelylene oxide)(PEO).2000In: Int. J. Quant. Chem., Vol. 80, p. 799-Article in journal (Refereed)
  • 49.
    Brandell, Daniel
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Klintenberg, M
    Aabloo, A
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Optical absorption spectra from rare-earth ions in polymers: the effect of the polymer host2002In: Macromolecular Symposia, Vol. 186, p. 51-Article in journal (Refereed)
  • 50.
    Brandell, Daniel
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Klintenberg, M
    Aabloo, A
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    The effect of the polymer host on optical absorption spectra for Er(CF3SO3)3 in poly(ethylene oxide)2002In: Journal of Materials Chemistry, Vol. 12, p. 565-Article in journal (Refereed)
123456 1 - 50 of 275
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf