Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
Begrens søket
1234567 1 - 50 of 1204
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Agapitov, Oleksiy
    et al.
    Artemyev, Anton
    Krasnoselskikh, Vladimir
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Mourenas, Didier
    Breuillard, Hugo
    Balikhin, Michael
    Rolland, Guy
    Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements2013Inngår i: Journal of Geophysical Research-Space Physics, ISSN 2169-9380, Vol. 118, nr 6, s. 3407-3420Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    ELF/VLF waves play a crucial role in the dynamics of the radiation belts and are partly responsible for the main losses and the acceleration of energetic electrons. Modeling wave-particle interactions requires detailed information of wave amplitudes and wave normal distribution over L-shells and over magnetic latitudes for different geomagnetic activity conditions. We performed a statistical study of ELF/VLF emissions using wave measurements in the whistler frequency range for 10years (2001-2010) aboard Cluster spacecraft. We utilized data from the STAFF-SA experiment, which spans the frequency range from 8Hz to 4kHz. We present distributions of wave magnetic and electric field amplitudes and wave normal directions as functions of magnetic latitude, magnetic local time, L-shell, and geomagnetic activity. We show that wave normals are directed approximately along the background magnetic field (with the mean value of the angle between the wave normal and the background magnetic field, about 10 degrees-15 degrees) in the vicinity of the geomagnetic equator. The distribution changes with magnetic latitude: Plasmaspheric hiss normal angles increase with latitude to quasi-perpendicular direction at approximate to 35 degrees-40 degrees where hiss can be reflected; lower band chorus are observed as two wave populations: One population of wave normals tends toward the resonance cone and at latitudes of around 35 degrees-45 degrees wave normals become nearly perpendicular to the magnetic field; the other part remains quasi-parallel at latitudes up to 30 degrees. The observed angular distribution is significantly different from Gaussian, and the width of the distribution increases with latitude. Due to the rapid increase of , the wave mode becomes quasi-electrostatic, and the corresponding electric field increases with latitude and has a maximum near 30 degrees. The magnetic field amplitude of the chorus in the day sector has a minimum at the magnetic equator but increases rapidly with latitude with a local maximum near 12 degrees-15 degrees. The wave magnetic field maximum is observed in the night sector at L>7 during low geomagnetic activity (at L approximate to 5 for K-p>3). Our results confirm the strong dependence of wave amplitude on geomagnetic activity found in earlier studies.

  • 2. Agapitov, Oleksiy
    et al.
    Krasnoselskikh, Vladimir
    de Wit, Thierry Dudok
    Khotyaintsev, Yuri
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Pickett, Jolene S.
    Santolik, Ondrej
    Rolland, Guy
    Multispacecraft observations of chorus emissions as a tool for the plasma density fluctuations' remote sensing2011Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 116, s. A09222-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Discrete ELF/VLF chorus emissions are the most intense electromagnetic plasma waves that are observed in the radiation belts and in the outer magnetosphere of the Earth. They are assumed to propagate approximately along the magnetic field lines and are generated in source regions in the vicinity of the magnetic equator and in minimum B pockets in the dayside outer zone of the magnetosphere. The presence of plasma density irregularities along the raypath causes a loss of phase coherence of the chorus wave packets. These irregularities are often present around the plasmapause and in the radiation belts; they occur at scales ranging from a few meters up to several hundred kilometers and can be highly anisotropic. Such irregularities result in fluctuations of the dielectric permittivity, whose statistical properties can be studied making use of intersatellite correlations of whistler waves' phases and amplitudes. We demonstrate how the whistler-mode wave properties can be used to infer statistical characteristics of the density fluctuations. The analogy between weakly coupled oscillators under the action of uncorrelated random forces and wave propagation in a randomly fluctuating medium is used to determine the wave phase dependence on the duration of signal recording time. We study chorus whistler-mode waves observed by the Cluster WBD instrument and apply intersatellite correlation analysis to determine the statistical characteristics of the waveform phases and amplitudes. We then infer the statistical characteristics of the plasma density fluctuations and evaluate the spatial distribution of the irregularities using the same chorus events observed by the four Cluster spacecraft.

  • 3. Agapitov, Oleksiy
    et al.
    Krasnoselskikh, Vladimir
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Rolland, Guy
    A statistical study of the propagation characteristics of whistler waves observed by Cluster2011Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 38, s. L20103-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    VLF waves play a crucial role in the dynamics of radiation belts, and are responsible for the loss and the acceleration of energetic electrons. Modeling wave-particle interactions requires the best possible knowledge for how wave energy and wave-normal directions are distributed in L-shells and for the magnetic latitudes of different magnetic activity conditions. In this work, we performed a statistical study for VLF emissions using a whistler frequency range for nine years (2001-2009) of Cluster measurements. We utilized data from the STAFF-SA experiment, which spans the frequency range from 8.8 Hz to 3.56 kHz. We show that the wave energy distribution has two maxima around L similar to 4.5 = 6 and L similar to 2, and that wave-normals are directed approximately along the magnetic field in the vicinity of the geomagnetic equator. The distribution changes with magnetic latitude, and so that at latitudes of similar to 30 degrees, wave-normals become nearly perpendicular to the magnetic field. The observed angular distribution is significantly different from Gaussian and the width of the distribution increases with latitude. Since the resonance condition for wave-particle interactions depends on the wave normal orientation, our results indicate that, due to the observed change in the wave-normal direction with latitude, the most efficient particle diffusion due to wave-particle interaction should occur in a limited region surrounding the geomagnetic equator.

  • 4. Aikio, A. T.
    et al.
    Pitkanen, T.
    Fontaine, D.
    Dandouras, I.
    Amm, O.
    Kozlovsky, A.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Fazakerley, A.
    EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary2008Inngår i: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 26, nr 1, s. 87-105Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromso (66.6 degrees cgmLat) and Longyearbyen (75.2 degrees cgmLat) on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB) made zig-zag-type motion with amplitude of 2.5 degrees cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL). The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992). The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm. During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 R-E mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL) as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency) fluctuations. The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2 degrees during similar to 5 min. The beginning of the poleward motion of the PCB was associated with an intensification of the downward FAC at the boundary. We suggest that the downward FAC sheet at the PCB is the high-altitude counterpart of the Earthward flowing FAC produced in the vicinity of the magnetotail neutral line by the Hall effect (Sonnerup, 1979) during a short-lived reconnection pulse.

  • 5.
    Aikio, A. T.
    et al.
    Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Vanhamaeki, H.
    Kyushu Univ, Int Ctr Space Weather Sci & Educ, Fukuoka, Japan;Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Workayehu, A. B.
    Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Virtanen, I. I.
    Univ Oulu, Ionospher Phys Unit, Oulu, Finland.
    Kauristie, K.
    Finnish Meteorol Inst, Helsinki, Finland.
    Juusola, L.
    Finnish Meteorol Inst, Helsinki, Finland.
    Buchert, Stephan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Knudsen, D.
    Univ Calgary, Dept Phys & Astron, Calgary, AB, Canada.
    Swarm Satellite and EISCAT Radar Observations of a Plasma Flow Channel in the Auroral Oval Near Magnetic Midnight2018Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 6, s. 5140-5158Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present Swarm satellite and EISCAT radar observations of electrodynamical parameters in the midnight sector at high latitudes. The most striking feature is a plasma flow channel located equatorward of the polar cap boundary within the dawn convection cell. The flow channel is 1.5 degrees wide in latitude and contains southward electric field of 150 mV/m, corresponding to eastward plasma velocities of 3,300 m/s in the F-region ionosphere. The theoretically computed ion temperature enhancement produced by the observed ion velocity is in accordance with the measured one by the EISCAT radar. The total width of the auroral oval is about 10 degrees in latitude. While the poleward part is electric field dominant with low conductivity and the flow channel, the equatorward part is conductivity dominant with at least five auroral arcs. The main part of the westward electrojet flows in the conductivity dominant part, but it extends to the electric field dominant part. According to Kamide and Kokubun (1996), the whole midnight sector westward electrojet is expected to be conductivity dominant, so the studied event challenges the traditional view. The flow channel is observed after substorm onset. We suggest that the observed flow channel, which is associated with a 13-kV horizontal potential difference, accommodates increased nightside plasma flows during the substorm expansion phase as a result of reconnection in the near-Earth magnetotail.

  • 6.
    Akbari, H.
    et al.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Andersson, L.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Andrews, David J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Malaspina, D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Benna, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Ergun, R.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    In Situ Electron Density From Active Sounding: The Influence of the Spacecraft Wake2019Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, nr 17-18, s. 10250-10256Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Results obtained in the Martian ionosphere by the Langmuir Probe and Waves instrument aboard the Mars Atmosphere and Volatile EvolutioN Mission spacecraft are presented. The results include ionospheric electron densities determined from the frequency of Langmuir waves. Since the amplitude of thermal Langmuir waves is often below the instrument's detection level, Langmuir Probe and Waves excites these waves by injecting into the plasma a 3.3-V white noise signal. Electric field spectral measurements obtained shortly after the excitation show a resonance line at frequencies slightly below the local plasma frequency. The observed resonance line is interpreted to originate from plasma waves excited in the wake behind the spacecraft. These results reveal an important phenomenon in electron density estimation from stimulated Langmuir waves. The observed phenomenon, not previously reported by earlier missions, may be a common process in active sounding that can affect in situ electron density measurements.

  • 7.
    Akbari, Saba
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Nätverksbaserade inbyggda system.
    Bergman, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Voigt, Thiemo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Nätverksbaserade inbyggda system.
    Fredriksson, Jesper
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Hjort, Klas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Mikrosystemteknik.
    Feasibility of Communication Between Sensor Nodes On-board Spacecraft Using Multi Layer Insulation2023Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    fulltext
  • 8.
    Al Moulla, Khaled
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Turbulence at MHD and sub-ion scales in the magnetosheath of Saturn: a comparative study between quasi-perpendicular and quasi-parallel bow shocks using in-situ Cassini data2018Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
    Abstract [en]

    The purpose of this project is to investigate the spectral properties of turbulence in the magnetosheath of Saturn, using in-situ magnetic field measurements from the Cassini spacecraft. According to models of incompressible, turbulent fluids, the energy spectrum in the inertial range scales as the frequency to the power of -5/3, which has been observed in the near-Earth Solar wind but not in the Terrestrial magnetosheath unless close to the magnetopause. 120 time intervals for when Cassini is inside the magnetosheath are identified — 40 in each category of behind quasi-perpendicular bow shocks, behind quasi-parallel bow shocks, and inside the middle of the magnetosheath. The power spectral density is thereafter calculated for each interval, with logarithmic regressions performed at the MHD and sub-ion scales separated by the ion gyrofrequency. The results seem to indicate similar behaviour as in the magnetosheath of Earth, without significant difference between quasi-perpendicular and quasi-parallel cases except somewhat steeper exponents at the MHD scale for the former. These observations confirm the role of the bow shock in destroying the fully developed turbulence of the Solar wind, thus explaining the absence of the inertial range.

    Fulltekst (pdf)
    fulltext
  • 9.
    Ala-Lahti, Matti
    et al.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Dimmock, Andrew P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Pulkkinen, Tuija I.
    Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.;Aalto Univ, Dept Elect & Nanoengn Engn, Espoo, Finland..
    Good, Simon W.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Yordanova, Emiliya
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Turc, Lucile
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Kilpua, Emilia K. J.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Transmission of an ICME Sheath Into the Earth's Magnetosheath and the Occurrence of Traveling Foreshocks2021Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 126, nr 12, artikkel-id e2021JA029896Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The transmission of a sheath region driven by an interplanetary coronal mass ejection into the Earth's magnetosheath is studied by investigating in situ magnetic field measurements upstream and downstream of the bow shock during an ICME sheath passage on 15 May 2005. We observe three distinct intervals in the immediate upstream region that included a southward magnetic field component and are traveling foreshocks. These traveling foreshocks were observed in the quasi-parallel bow shock that hosted backstreaming ions and magnetic fluctuations at ultralow frequencies. The intervals constituting traveling foreshocks in the upstream survive transmission to the Earth's magnetosheath, where their magnetic field, and particularly the southward component, was significantly amplified. Our results further suggest that the magnetic field fluctuations embedded in an ICME sheath may survive the transmission if their frequency is below ∼0.01 Hz. Although one of the identified intervals was coherent, extending across the ICME sheath and being long-lived, predicting ICME sheath magnetic fields that may transmit to the Earth's magnetosheath from the upstream at L1 observations has ambiguity. This can result from the strong spatial variability of the ICME sheath fields in the longitudinal direction, or alternatively from the ICME sheath fields developing substantially within the short time it takes the plasma to propagate from L1 to the bow shock. This study demonstrates the complex interplay ICME sheaths have with the Earth's magnetosphere when passing by the planet.

  • 10.
    Ala-Lahti, Matti
    et al.
    Univ Helsinki, Dept Phys, Helsinki, Finland.
    Kilpua, Emilia K. J.
    Univ Helsinki, Dept Phys, Helsinki, Finland.
    Soucek, Jan
    Czech Acad Sci, Inst Atmospher Phys, Prague, Czech Republic.
    Pulkkinen, Tuija, I
    Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA;Aalto Univ, Sch Elect Engn, Espoo, Finland.
    Dimmock, Andrew P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Alfven Ion Cyclotron Waves in Sheath Regions Driven by Interplanetary Coronal Mass Ejections2019Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, nr 6, s. 3893-3909Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report on a statistical analysis of the occurrence and properties of Alfven ion cyclotron (AIC) waves in sheath regions driven by interplanetary coronal mass ejections (ICMEs). We have developed an automated algorithm to identify AIC wave events from magnetic field data and apply it to investigate 91 ICME sheath regions recorded by the Wind spacecraft. Our analysis focuses on waves generated by the ion cyclotron instability. AIC waves are observed to be frequent structures in ICME-driven sheaths, and their occurrence is the highest in the vicinity of the shock. Together with previous studies, our results imply that the shock compression has a crucial role in generating wave activity in ICME sheaths. AIC waves tend to have their frequency below the ion cyclotron frequency, and, in general, occur in plasma that is stable with respect to the ion cyclotron instability and has lower ion beta(parallel to) than mirror modes. The results suggest that the ion beta anisotropy beta(perpendicular to)/beta(parallel to) > 1 appearing in ICME sheaths is regulated by both ion cyclotron and mirror instabilities.

  • 11.
    Ala-Lahti, Matti M.
    et al.
    Univ Helsinki, Dept Phys, POB 64, Helsinki, Finland.
    Kilpua, Emilia K. J.
    Univ Helsinki, Dept Phys, POB 64, Helsinki, Finland.
    Dimmock, Andrew P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Aalto Univ, Sch Elect Engn, Espoo, Finland.
    Osmane, Adnane
    Aalto Univ, Sch Elect Engn, Espoo, Finland.
    Pulkkinen, Tuija
    Aalto Univ, Sch Elect Engn, Espoo, Finland.
    Soucek, Jan
    Czech Acad Sci, Inst Atmospher Phys, Prague, Czech Republic.
    Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection2018Inngår i: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 36, nr 3, s. 793-808Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfven Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

    Fulltekst (pdf)
    fulltext
  • 12.
    Alberti, Tommaso
    et al.
    INAF Ist Astrofis & Planetol Spaziali, Rome, Italy.
    Consolini, Giuseppe
    INAF Ist Astrofis & Planetol Spaziali, , Rome, Italy.
    Carbone, Vincenzo
    Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy.
    Yordanova, Emiliya
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Marcucci, Maria Federica
    INAF Ist Astrofis & Planetol Spaziali, Rome, Italy.
    De Michelis, Paola
    Ist Nazl Geofis & Vulcanol, Rome, Italy.
    Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach2019Inngår i: Entropy, E-ISSN 1099-4300, Vol. 21, nr 3, artikkel-id 320Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Turbulence, intermittency, and self-organized structures in space plasmas can be investigated by using a multifractal formalism mostly based on the canonical structure function analysis with fixed constraints about stationarity, linearity, and scales. Here, the Empirical Mode Decomposition (EMD) method is firstly used to investigate timescale fluctuations of the solar wind magnetic field components; then, by exploiting the local properties of fluctuations, the structure function analysis is used to gain insights into the scaling properties of both inertial and kinetic/dissipative ranges. Results show that while the inertial range dynamics can be described in a multifractal framework, characterizing an unstable fixed point of the system, the kinetic/dissipative range dynamics is well described by using a monofractal approach, because it is a stable fixed point of the system, unless it has a higher degree of complexity and chaos.

    Fulltekst (pdf)
    FULLTEXT01
  • 13.
    Alexandersson, Ilona
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Comet Ion Tail Observations Far From the Nucleus2011Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
    Abstract [en]

    On may 1, 1996, Ulysses spacecraft crossed the ion tail of comet Hyakutake, revealing an ion tail length of more than 3 times the Sun-Earth distance. The signatures of an ion tail, especially the ion tail far from the nucleus, are not well explored and many question marks remain. This report summarizes previous observations of spacecraft - ion tail crossings and what signatures that can be expected, as well as signatures of other known solar wind structures. A data analysis is made of possible ion tail encounters from Rosetta spacecraft measurements, Ulysses spacecraft measurements and Earth-orbiting spacecraft measurements. A search from Venus Express data to detect ion tails of sungrazing comets is presented.

    Fulltekst (pdf)
    FULLTEXT02
  • 14.
    Alho, M.
    et al.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Battarbee, M.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Pfau-Kempf, Y.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Linz, Austria..
    Cozzani, G.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Ganse, U.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Turc, L.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Johlander, A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Univ Helsinki, Dept Phys, Helsinki, Finland..
    Horaites, K.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Tarvus, V
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Zhou, H.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Grandin, M.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Dubart, M.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Papadakis, K.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Suni, J.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    George, H.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Bussov, M.
    Univ Helsinki, Dept Phys, Helsinki, Finland..
    Palmroth, M.
    Univ Helsinki, Dept Phys, Helsinki, Finland.;Finnish Meteorol Inst, Helsinki, Finland..
    Electron Signatures of Reconnection in a Global eVlasiator Simulation2022Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 49, nr 14, artikkel-id e2022GL098329Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.

    Fulltekst (pdf)
    fulltext
  • 15.
    Alinder, Simon
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Effect of the convective electric field on the ion number density around a low activity comet2017Student paper other, 5 poäng / 7,5 hpOppgave
    Abstract [en]

    Vigren et al. (2015) presents an integral expression to calculate the ion number density around a low activity comet immersed in the solar wind's convective electric field. A certain parameter of the integral takes values of either 1 or 0 depending on whether a corresponding ion trajectory is feasible or not. The criteria used in the paper has been found not to be strict enough, yielding overestimated ion number densities in the cometary wake. The present project finds two new options for the criteria, one analytical and one numerical. The new numerical condition is tested in the same computations done in the original paper and compares the results of the old and new criteria. The new conditionis found to correct the previous error.

    Fulltekst (pdf)
    fulltext
  • 16.
    Allen, R. C.
    et al.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Cernuda, I
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Pacheco, D.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Berger, L.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Xu, Z. G.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    von Forstner, J. L. Freiherr
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Rodriguez-Pacheco, J.
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Wimmer-Schweingruber, R. F.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Ho, G. C.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Mason, G. M.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Vines, S. K.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Horbury, T.
    Imperial Coll, London, England..
    Maksimovic, M.
    Univ Paris Diderot, Observ Paris, Sorbonne Univ, CNRS,LESIA,Univ PSL, Sorbonne Paris Cite,5 Pl Jules Janssen, F-92195 Meudon, France..
    Hadid, L. Z.
    Univ Paris Saclay, Observ Paris, Sorbonne Univ, Ecole Polytech,CNRS,LPP, Paris, France..
    Volwerk, M.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Dimmock, Andrew P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Sorriso-Valvo, Luca
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. CNR ISTP Ist Sci & Tecnol Plasmi, Via Amendola 122-D, I-70126 Bari, Italy..
    Stergiopoulou, Katerina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Andrews, G. B.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Angelini, V
    Imperial Coll, London, England..
    Bale, S. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA..
    Boden, S.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany.;DSI Datensicherheit GmbH, Rodendamm 34, D-28816 Stuhr, Germany..
    Boettcher, S. , I
    Chust, T.
    Univ Paris Saclay, Observ Paris, Sorbonne Univ, Ecole Polytech,CNRS,LPP, Paris, France..
    Eldrum, S.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Espada, P. P.
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Lara, F. Espinosa
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Evans, V
    Imperial Coll, London, England..
    Gomez-Herrero, R.
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Hayes, J. R.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Hellin, A. M.
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Kollhoff, A.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Krasnoselskikh, V
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France..
    Kretzschmar, M.
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France.;Univ Orleans, Orleans, France..
    Kuehl, P.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Kulkarni, S. R.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany.;Deutsch Elektronen Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany..
    Lees, W. J.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Lorfevre, E.
    CNES, Toulouse, France..
    Martin, C.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany.;German Aerosp Ctr, Dept Extrasolar Planets & Atmospheres, Berlin, Germany..
    O'Brien, H.
    Imperial Coll, London, England..
    Plettemeier, D.
    Tech Univ Dresden, Dresden, Germany..
    Polo, O. R.
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Prieto, M.
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Ravanbakhsh, A.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany.;Max Planck Inst Solar Syst Res, Gottingen, Germany..
    Sanchez-Prieto, S.
    Univ Alcala De Henares, Space Res Grp, Madrid, Spain..
    Schlemm, C. E.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Seifert, H.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA..
    Soucek, J.
    Czech Acad Sci, Inst Atmospher Phys, Prague, Czech Republic..
    Steller, M.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Stverak, S.
    Czech Acad Sci, Astron Inst, Prague, Czech Republic..
    Terasa, J. C.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany..
    Travnicek, P.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.;Czech Acad Sci, Astron Inst, Prague, Czech Republic..
    Tyagi, K.
    Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA.;Univ Colorado, LASP, Boulder, CO 80309 USA..
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Royal Inst Technol, Sch Elect Engn & Comp Sci, Dept Space & Plasma Phys, Stockholm, Sweden..
    Vecchio, A.
    Univ Paris Diderot, Observ Paris, Sorbonne Univ, CNRS,LESIA,Univ PSL, Sorbonne Paris Cite,5 Pl Jules Janssen, F-92195 Meudon, France.;Radboud Univ Nijmegen, Res Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands..
    Yedla, M.
    Christian Albrechts Univ Kiel, Inst Expt & Angewande Phys, D-24118 Kiel, Germany.;Max Planck Inst Solar Syst Res, Gottingen, Germany..
    Energetic ions in the Venusian system: Insights from the first Solar Orbiter flyby2021Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 656, artikkel-id A7Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to similar to 10 keV) were observed as far as similar to 50R(V) downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5R(V) upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 R-V. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to similar to 30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.

    Fulltekst (pdf)
    FULLTEXT01
  • 17. Allen, R. C.
    et al.
    Zhang, J. -C
    Kistler, L. M.
    Spence, H. E.
    Lin, R. -L
    Dunlop, M. W.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Multiple bidirectional EMIC waves observed by Cluster at middle magnetic latitudes in the dayside magnetosphere2013Inngår i: Journal of Geophysical Research: Space Physics, ISSN 2169-9380, Vol. 118, nr 10, s. 6266-6278Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    It is well accepted that the propagation of electromagnetic ion cyclotron (EMIC) waves are bidirectional near their source regions and unidirectional when away from these regions. The generally believed source region for EMIC waves is around the magnetic equatorial plane. Here we describe a series of EMIC waves in the Pc1 (0.2-5 Hz) frequency band above the local He+ cyclotron frequency observed in situ by all four Cluster spacecraft on 9 April 2005 at midmagnetic latitudes (MLAT = similar to 33 degrees-49 degrees) with L = 10.7-11.5 on the dayside (MLT = 10.3-10.4). A Poynting vector spectrum shows that the wave packets consist of multiple groups of packets propagating bidirectionally, rather than unidirectionally, away from the equator, while the local plasma conditions indicate that the spacecraft are entering into a region sufficient for local wave excitation. One possible interpretation is that, while part of the observed waves are inside their source region, the others are either close enough to the source region, or mixed with the wave packets from multiple source regions at different latitudes.

  • 18.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, D-85748 Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, Space Sci Div, SSTD, Didcot OX11 0QX, Oxon, England..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    A statistical study of EMIC waves observed by Cluster: 1. Wave properties2014Inngår i: 2014 XXXITH URSI General Assembly And Scientific Symposium (URSI GRASS), 2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the L-MLT frame within a limited MLAT range. In this study, we present a statistical analysis of EMIC wave properties using ten years (2001-2010) of data from Cluster, totaling 17,987 minutes of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The current paper focuses on the wave occurrence distribution as well as the distribution of wave properties.

  • 19.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, D-85748 Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, Div Space Sci, Harwell, Oxon, England..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Jordanova, V. K.
    Los Alamos Natl Lab, Los Alamos, NM USA..
    A statistical study of EMIC waves observed by Cluster: 1. Wave properties2015Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 7, s. 5574-5592Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10years (2001-2010) of data from Cluster, totaling 25,431min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  • 20.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, SSTD, Div Space Sci, Didcot, Oxon, England..
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Jordanova, V. K.
    Los Alamos Natl Lab, Los Alamos, NM USA..
    A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions2016Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 7, s. 6458-6479Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10years (2001-2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. This paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these same frames. Based on the distributions of hot H+ anisotropy, electron and hot H+ density measurements, hot H+ parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.

  • 21.
    Alm, L.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.;Southwest Res Inst, San Antonio, TX USA..
    Farrugia, C. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA..
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lindqvist, P. -A
    Marklund, G. T.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Coll Comp Math & Nat Sci, College Pk, MD 20742 USA..
    EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space2017Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 3, s. 3262-3276Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.

  • 22.
    Alm, L.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH, USA.
    Farrugia, C. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Paulson, K. W.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA; Southwest Res Inst, San Antonio, TX USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA.
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lindqvist, P. -A
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Marklund, G. T.
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Differing Properties of Two Ion-Scale Magnetopause Flux Ropes2018Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 1, s. 114-131Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion‐scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub‐di spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.

    Fulltekst (pdf)
    fulltext
  • 23.
    Alm, Love
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Graham, Daniel B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    KTH Royal Inst Technol, Stockholm, Sweden.
    Chappell, Charles R.
    Vanderbilt Univ, Dept Phys & Astron, Vanderbilt Dyer Observ, Nashville, TN 37235 USA.
    Dargent, Jeremy
    Univ Pisa, Phys Dept Enrico Fermi, Pisa, Italy.
    Fuselier, Stephen A.
    Southwest Res Inst, San Antonio, TX USA;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA.
    Haaland, Stein
    Max Planck Inst Solar Syst Res, Gottingen, Germany;Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Lavraud, Benoit
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France.
    Li, Wenya
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China.
    Tenfjord, Paul
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Toledo-Redondo, Sergio
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France.
    Vines, Sarah K.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    MMS Observations of Multiscale Hall Physics in the Magnetotail2019Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, nr 17-18, s. 10230-10239Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present Magnetospheric Multiscale mission (MMS) observations of Hall physics in the magnetotail, which compared to dayside Hall physics is a relatively unexplored topic. The plasma consists of electrons, moderately cold ions (T similar to 1.5 keV) and hot ions (T similar to 20 keV). MMS can differentiate between the cold ion demagnetization region and hot ion demagnetization regions, which suggests that MMS was observing multiscale Hall physics. The observed Hall electric field is compared with a generalized Ohm's law, accounting for multiple ion populations. The cold ion population, despite its relatively high initial temperature, has a significant impact on the Hall electric field. These results show that multiscale Hall physics is relevant over a much larger temperature range than previously observed and is relevant for the whole magnetosphere as well as for other astrophysical plasma.

  • 24.
    Alm, Love
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA;Southwest Res Inst, San Antonio, TX USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
    Lindqvist, P. -A
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Magnetotail Hall Physics in the Presence of Cold Ions2018Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, nr 20, s. 10941-10950Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present the first in situ observation of cold ionospheric ions modifying the Hall physics of magnetotail reconnection. While in the tail lobe, Magnetospheric Multiscale mission observed cold (tens of eV) E x B drifting ions. As Magnetospheric Multiscale mission crossed the separatrix of a reconnection exhaust, both cold lobe ions and hot (keV) ions were observed. During the closest approach of the neutral sheet, the cold ions accounted for similar to 30% of the total ion density. Approximately 65% of the initial cold ions remained cold enough to stay magnetized. The Hall electric field was mainly supported by the j x B term of the generalized Ohm's law, with significant contributions from the del center dot P-e and v(c) x B terms. The results show that cold ions can play an important role in modifying the Hall physics of magnetic reconnection even well inside the plasma sheet. This indicates that modeling magnetic reconnection may benefit from including multiscale Hall physics. Plain Language Summary Cold ions have the potential of changing the fundamental physics behind magnetic reconnection. Here we present the first direct observation of this process in action in the magnetotail. Cold ions from the tail lobes were able to remain cold even deep inside the much hotter plasma sheet. Even though the cold ions only accounted for similar to 30% of the total ions, they had a significant impact on the electric fields near the reconnection region.

  • 25.
    Alqeeq, S. W.
    et al.
    Univ Paris Saclay, Inst Polytech Paris, UMR7648, Lab Phys Plasmas LPP,CNRS,Sorbonne Univ,Observ Par, Paris, France..
    Le Contel, O.
    Univ Paris Saclay, Inst Polytech Paris, UMR7648, Lab Phys Plasmas LPP,CNRS,Sorbonne Univ,Observ Par, Paris, France..
    Canu, P.
    Univ Paris Saclay, Inst Polytech Paris, UMR7648, Lab Phys Plasmas LPP,CNRS,Sorbonne Univ,Observ Par, Paris, France..
    Retino, A.
    Univ Paris Saclay, Inst Polytech Paris, UMR7648, Lab Phys Plasmas LPP,CNRS,Sorbonne Univ,Observ Par, Paris, France..
    Chust, T.
    Univ Paris Saclay, Inst Polytech Paris, UMR7648, Lab Phys Plasmas LPP,CNRS,Sorbonne Univ,Observ Par, Paris, France..
    Mirioni, L.
    Univ Paris Saclay, Inst Polytech Paris, UMR7648, Lab Phys Plasmas LPP,CNRS,Sorbonne Univ,Observ Par, Paris, France..
    Chuvatin, A.
    Univ Paris Saclay, Inst Polytech Paris, UMR7648, Lab Phys Plasmas LPP,CNRS,Sorbonne Univ,Observ Par, Paris, France..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Wilder, F. D.
    Univ Texas Arlington, Dept Phys, Arlington, TX USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Lindqvist, P. -A
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.;Univ Texas San Antonio, San Antonio, TX USA..
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH USA.;Univ New Hampshire, Dept Phys, Durham, NH USA..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA.;Univ Texas San Antonio, San Antonio, TX USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Wei, H. Y.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Bromund, K. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Fischer, D.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Japan..
    Two Classes of Equatorial Magnetotail Dipolarization Fronts Observed by Magnetospheric Multiscale Mission: A Statistical Overview2023Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 128, nr 10, artikkel-id e2023JA031738Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We carried out a statistical study of equatorial dipolarization fronts (DFs) detected by the Magnetospheric Multiscale mission during the full 2017 Earth's magnetotail season. We found that two DF classes are distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation and a new class II (25.6%). This new class includes the six DF discussed in Alqeeq et al. (2022, ) and corresponds to a bump of the magnetic field associated with a minimum in the ion and electron pressures and a reversal of the energy conversion process. The possible origin of this second class is discussed. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.

  • 26.
    Alqeeq, S. W.
    et al.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Le Contel, O.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Canu, P.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Retino, A.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Chust, T.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Mirioni, L.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Richard, Louis
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Ait-Si-Ahmed, Y.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Alexandrova, A.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Chuvatin, A.
    Univ Paris Saclay, Inst Polytech Paris, Lab Phys Plasmas LPP,CNRS, Sorbonne Univ,Ecole Polytech,Observ Paris,UMR7648, F-75005 Paris, France..
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA..
    Baraka, S. M.
    Hampton Univ, NIA, Hampton, VA 23666 USA..
    Nakamura, R.
    Wilder, F. D.
    Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria.;Univ Texas Arlington, Phys Fac, Arlington, TX 76019 USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Lindqvist, P. A.
    Royal Inst Technol, S-11428 Stockholm, Sweden..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA..
    Magnes, W.
    Hampton Univ, NIA, Hampton, VA 23666 USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA..
    Bromund, K. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Wei, H.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria..
    Anderson, B. J.
    Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX 78238 USA..
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan..
    Lavraud, B.
    Univ Paul Sabatier, CNRS, UMR5277, Inst Rech Astrophys & Planetol IRAP, F-31400 Toulouse, France..
    Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements2022Inngår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 29, nr 1, artikkel-id 012906Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J & BULL; E > 0) ahead or at the DF, whereas it is the opposite (J & BULL; E < 0) behind the front. This reversal is mainly due to a local reversal of the cross-tail current indicating a substructure of the DF. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J & BULL; E & PRIME; < 0) and should contribute to the deceleration of the fast flow. However, we show that the energy conversion process is not homogeneous at the electron scales due to electric field fluctuations likely related to lower-hybrid drift waves. Our results suggest that the role of DF in the global energy cycle of the magnetosphere still deserves more investigation. In particular, statistical studies on DF are required to be carried out with caution due to these electron scale substructures.

  • 27. Amata, E.
    et al.
    Savin, S.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Dunlop, M.
    Khotyaintsev, Yuri
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Marcucci, M. F.
    Fazakerley, A.
    Bogdanova, Y. V.
    Decreau, P. M. E.
    Rauch, J. L.
    Trotignon, J. G.
    Skalsky, A.
    Romanov, S.
    Buechner, J.
    Blecki, J.
    Reme, H.
    Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion2006Inngår i: Nonlinear processes in geophysics, ISSN 1023-5809, E-ISSN 1607-7946, Vol. 13, nr 4, s. 365-376Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study plasma transport at a thin magnetopause (MP), described hereafter as a thin current sheet (TCS), observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF) model in the magnetosheath (MSH) up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a similar to 90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with M-A=3 and beta> 10 (peak value 23). The magnetic field clock angle rotates by 70 degrees across the MP. E-x is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a similar to 300 V electric potential jump across the TCS. The E x B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV), being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006).

  • 28. Amm, O.
    et al.
    Aruliah, A.
    Buchert, Stephan C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Fujii, R.
    Gjerloev, J. W.
    Ieda, A.
    Matsuo, T.
    Stolle, C.
    Vanhamaeki, H.
    Yoshikawa, A.
    Towards understanding the electrodynamics of the 3-dimensional high-latitude ionosphere: present and future2008Inngår i: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 26, nr 12, s. 3913-3932Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Traditionally, due to observational constraints, ionospheric modelling and data analysis techniques have been devised either in one dimension (e. g. along a single radar beam), or in two dimensions (e. g. over a network of magnetometers). With new upcoming missions like the Swarm ionospheric multi-satellite project, or the EISCAT 3-D project, the time has come to take into account variations in all three dimensions simultaneously, as they occur in the real ionosphere. The link between ionospheric electrodynamics and the neutral atmosphere circulation which has gained increasing interest in the recent years also intrinsically requires a truly 3-dimensional (3-D) description. In this paper, we identify five major science questions that need to be addressed by 3-D ionospheric modelling and data analysis. We briefly review what proceedings in the young field of 3-D ionospheric electrodynamics have been made in the past to address these selected question, and we outline how these issues can be addressed in the future with additional observations and/or improved data analysis and simulation techniques. Throughout the paper, we limit the discussion to high-latitude and mesoscale ionospheric electrodynamics, and to directly data-driven (not statistical) data analysis.

  • 29.
    Andersson, L.
    et al.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Ergun, R. E.
    Univ Colorado, LASP, Boulder, CO 80309 USA.;Univ Colorado, APS, Boulder, CO 80309 USA..
    Delory, G. T.
    Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA..
    Eriksson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Westfall, J.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Reed, H.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    McCauly, J.
    Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA..
    Summers, D.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Meyers, D.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    The Langmuir Probe and Waves (LPW) Instrument for MAVEN2015Inngår i: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 195, nr 1-4, s. 173-198Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    We describe the sensors, the sensor biasing and control, the signal-processing unit, and the operation of the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The LPW instrument is designed to measure the electron density and temperature in the ionosphere of Mars and to measure spectral power density of waves (DC-2 MHz) in Mars' ionosphere, including one component of the electric field. Low-frequency plasma waves can heat ions resulting in atmospheric loss. Higher-frequency waves are used to calibrate the density measurement and to study strong plasma processes. The LPW is part of the Particle and Fields (PF) suite on the MAVEN spacecraft. The LPW instrument utilizes two, 40 cm long by 0.635 cm diameter cylindrical sensors with preamplifiers, which can be configured to measure either plasma currents or plasma waves. The sensors are mounted on a pair of meter long stacer booms. The sensors and nearby surfaces are controlled by a Boom Electronics Board (BEB). The Digital Fields Board (DFB) conditions the analog signals, converts the analog signals to digital, processes the digital signals including spectral analysis, and packetizes the data for transmission. The BEB and DFB are located inside of the Particle and Fields Digital Processing Unit (PFDPU).

  • 30. Andersson, L.
    et al.
    Ergun, R. E.
    Tao, J.
    Roux, A.
    LeContel, O.
    Angelopoulos, V.
    Bonnell, J.
    McFadden, J. P.
    Larson, D. E.
    Eriksson, S.
    Johansson, T.
    Cully, Christopher
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Newman, D. N.
    Goldman, M. V.
    Glassmeier, K. -H
    Baumjohann, W.
    New Features of Electron Phase Space Holes Observed by the THEMIS Mission2009Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 102, nr 22, s. 225004-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Observations of electron phase-space holes (EHs) in Earth's plasma sheet by the THEMIS satellites include the first detection of a magnetic perturbation (delta B-parallel to) parallel to the ambient magnetic field (B-0). EHs with a detectable delta B-parallel to have several distinguishing features including large electric field amplitudes, a magnetic perturbation perpendicular to B-0, high speeds (similar to 0.3c) along B-0, and sizes along B-0 of tens of Debye lengths. These EHs have a significant center potential (Phi similar to k(B)T(e)/e), suggesting strongly nonlinear behavior nearby such as double layers or magnetic reconnection.

  • 31.
    Andersson, L.
    et al.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Weber, T. D.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Malaspina, D.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Crary, F.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Delory, G. T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Fowler, C. M.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Morooka, M. W.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    McEnulty, T.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Eriksson, Anders. I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Andrews, David. J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Horanyi, M.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Collette, A.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Yelle, R.
    Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA..
    Jakosky, B. M.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA..
    Dust observations at orbital altitudes surrounding Mars2015Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 350, nr 6261, artikkel-id aad0398Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above similar to 150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of similar to 18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  • 32. Andreeova, K.
    et al.
    Pulkkinen, T. I.
    Laitinen, Tiera V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Prech, L.
    Shock propagation in the magnetosphere: Observations and MHD simulations compared2008Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 113, nr A9, s. A09224-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We examine the propagation of disturbances in the Earth's magnetosphere caused by fast forward shock interaction with the magnetopause. Our statistical study and event analyses show that the propagation speeds are larger in the magnetosphere than in the solar wind and are larger in the nightside magnetosphere than in the dayside magnetosphere. A case study of a double shock during 9 November 2002 is examined both observationally and using the GUMICS-4 global MHD simulation. Tracing the disturbance propagation allows us to confirm that the MHD simulation results are in good agreement with the in situ observations. The simulation results show that the propagation of the disturbance occurs in the antisunward direction at all clock angles simultaneously. However, changes in the magnetosheath are largest at high latitudes, while in the magnetotail the largest variations are seen in the plasma sheet.

  • 33.
    Andres, N.
    et al.
    Univ Paris Sud, Sorbonne Univ, Lab Phys Plasmas, CNRS,Ecole Polytech,Observ Paris, F-91128 Palaiseau, France.
    Sahraoui, F.
    Univ Paris Sud, Sorbonne Univ, Lab Phys Plasmas, CNRS,Ecole Polytech,Observ Paris, F-91128 Palaiseau, France.
    Galtier, S.
    Univ Paris Sud, Sorbonne Univ, Lab Phys Plasmas, CNRS,Ecole Polytech,Observ Paris, F-91128 Palaiseau, France;Univ Paris Saclay, Univ Paris Sud, Paris, France.
    Hadid, Lina Z
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Dmitruk, P.
    UBA, CONICET, Inst Fis Buenos Aires, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
    Mininni, P. D.
    Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
    Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence2018Inngår i: Journal of Plasma Physics, ISSN 0022-3778, E-ISSN 1469-7807, Vol. 84, nr 4, artikkel-id 905840404Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three-dimensional direct numerical simulations are used to study the energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. Our analysis is guided by a two-point exact law derived recently for this problem in which flux, source, hybrid and mixed terms are present. The relative importance of each term is studied for different initial subsonic Mach numbers M-S and different magnetic guide fields B-0. The dominant contribution to the energy cascade rate comes from the compressible flux, which depends weakly on the magnetic guide field B-0, unlike the other terms whose moduli increase significantly with M s and B-0. In particular, for strong B-0 the source and hybrid terms are dominant at small scales with almost the same amplitude but with a different sign. A statistical analysis undertaken with an isotropic decomposition based on the SO(3) rotation group is shown to generate spurious results in the presence of B-0, when compared with an axisymmetric decomposition better suited to the geometry of the problem. Our numerical results are compared with previous analyses made with in situ measurements in the solar wind and the terrestrial magnetosheath.

  • 34.
    Andrews, David
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Eriksson, Anders I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Gurnett, D. A.
    Morgan, D.
    Nemec, F.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Control of the topside Martian ionosphere by crustal magnetic fields2015Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 4, s. 3042-3058Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument onboard Mars Express of the thermal electron plasma density of the Martian ionosphere and investigate the extent to which it is influenced by the presence of Mars's remnant crustal magnetic fields. We use locally measured electron densities, derived when MARSIS is operating in active ionospheric sounding (AIS) mode, covering an altitude range from approximate to 300km to approximate to 1200km. We compare these measured densities to an empirical model of the dayside ionospheric plasma density in this diffusive transport-dominated regime. We show that small spatial-scale departures from the averaged values are strongly correlated with the pattern of the crustal fields. Persistently elevated densities are seen in regions of relatively stronger crustal fields across the whole altitude range. Comparing these results with measurements of the (scalar) magnetic field also obtained by MARSIS/AIS, we characterize the dayside strength of the draped magnetic fields in the same regions. Finally, we provide a revised empirical model of the plasma density in the Martian ionosphere, including parameterizations for both the crustal field-dominated and draping-dominated regimes.

  • 35.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Andersson, L.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Delory, G. T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Ergun, R. E.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Eriksson, Anders I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Fowler, C. M.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    McEnulty, T.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Morooka, M. W.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Weber, T.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Jakosky, B. M.
    Lab Atmospher & Space Phys, Boulder, CO USA..
    Ionospheric plasma density variations observed at Mars by MAVEN/LPW2015Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, nr 21, s. 8862-8869Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report on initial observations made by the Langmuir Probe and Waves relaxation sounding experiment on board the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. These measurements yield the ionospheric thermal plasma density, and we use these data here for an initial survey of its variability. Studying orbit-to-orbit variations, we show that the relative variability of the ionospheric plasma density is lowest at low altitudes near the photochemical peak, steadily increases toward higher altitudes and sharply increases as the spacecraft crosses the terminator and moves into the nightside. Finally, despite the small volume of data currently available, we show that a clear signature of the influence of crustal magnetic fields on the thermal plasma density fluctuations is visible. Such results are consistent with previously reported remote measurements made at higher altitudes, but crucially, here we sample a new span of altitudes between similar to 130 and similar to 300 km using in situ techniques.

  • 36.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Dieval, C.
    Duru, F.
    Gurnett, D. A.
    Morgan, D.
    Witasse, O.
    Oblique reflections in the Mars Express MARSIS data set: Stable density structures in the Martian ionosphere2014Inngår i: Journal of Geophysical Research-Space Physics, ISSN 2169-9380, Vol. 119, nr 5, s. 3944-3960Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the European Space Agency's Mars Express (MEX) spacecraft routinely detects evidence of localized plasma density structures in the Martian dayside ionosphere. Such structures, likely taking the form of spatially extended elevations in the plasma density at a given altitude, give rise to oblique reflections in the Active Ionospheric Sounder data. These structures are likely related to the highly varied Martian crustal magnetic field. In this study we use the polar orbit of MEX to investigate the repeatability of the ionospheric structures producing these anomalous reflections, examining data taken in sequences of multiple orbits which pass over the same regions of the Martian surface under similar solar illuminations, within intervals lasting tens of days. Presenting three such examples, or case studies, we show for the first time that these oblique reflections are often incredibly stable, indicating that the underlying ionospheric structures are reliably reformed in the same locations and with qualitatively similar parameters. The visibility, or lack thereof, of a given oblique reflection on a single orbit can generally be attributed to variations in the crustal field within the ionosphere along the spacecraft trajectory. We show that, within these examples, oblique reflections are generally detected whenever the spacecraft passes over regions of intense near-radial crustal magnetic fields (i.e., with a cusp-like configuration). The apparent stability of these structures is an important feature that must be accounted for in models of their origin.

  • 37.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Barabash, S.
    Swedish Inst Space Phys, Kiruna, Sweden..
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Hall, B. E. S.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Holmström, M.
    Swedish Inst Space Phys, Kiruna, Sweden..
    Lester, M.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Morgan, D. D.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Ramstad, R.
    Swedish Inst Space Phys, Kiruna, Sweden..
    Sanchez-Cano, B.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England..
    Way, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik. NASA Goddard Inst Space Studies, New York, NY USA..
    Witasse, O.
    ESA ESTEC, Noordwijjk, Netherlands..
    Plasma observations during the Mars atmospheric "plume" event of March-April 20122016Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, nr 4, s. 3139-3154Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present initial analyses and conclusions from plasma observations made during the reported "Mars plume event" of March-April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator, the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  • 38.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Cowley, S. W. H.
    Dougherty, M. K.
    Lamy, L.
    Provan, G.
    Southwood, D. J.
    Planetary period oscillations in Saturn's magnetosphere: Evolution of magnetic oscillation properties from southern summer to post-equinox2012Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 117, s. A04224-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate the evolution of the properties of planetary period magnetic field oscillations observed by the Cassini spacecraft in Saturn's magnetosphere over the interval from late 2004 to early 2011, spanning equinox in mid-2009. Oscillations within the inner quasi-dipolar region (L <= 12) consist of two components of close but distinct periods, corresponding essentially to the periods of the northern and southern Saturn kilometric radiation (SKR) modulations. These give rise to modulations of the combined amplitude and phase at the beat period of the two oscillations, from which the individual oscillation amplitudes and phases (and hence periods) can be determined. Phases are also determined from northern and southern polar oscillation data when available. Results indicate that the southern-period amplitude declines modestly over this interval, while the northern-period amplitude approximately doubles to become comparable with the southern-period oscillations during the equinox interval, producing clear effects in pass-to-pass oscillation properties. It is also shown that the periods of the two oscillations strongly converge over the equinox interval, such that the beat period increases significantly from similar to 20 to more than 100 days, but that they do not coalesce or cross during the interval investigated, contrary to recent reports of the behavior of the SKR periods. Examination of polar oscillation data for similar beat phase effects yields a null result within a similar to 10% upper limit on the relative amplitude of northern-period oscillations in the south and vice versa. This result strongly suggests a polar origin for the two oscillation periods.

  • 39.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Cowley, S. W. H.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England.
    Provan, G.
    Univ Leicester, Dept Phys & Astron, Leicester, Leics, England.
    Hunt, G. J.
    Imperial Coll London, Blackett Lab, London, England.
    Hadid, Lina Z
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Morooka, Michiko
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Wahlund, Jan-Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    The Structure of Planetary Period Oscillations in Saturn's Equatorial Magnetosphere: Results From the Cassini Mission2019Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, nr 11, s. 8361-8395Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Saturn's magnetospheric magnetic field, planetary radio emissions, plasma populations, and magnetospheric structure are all known to be modulated at periods close to the assumed rotation period of the planetary interior. These oscillations are readily apparent despite the high degree of axisymmetry in the internally produced magnetic field of the planet and have different rotation periods in the northern and southern hemispheres. In this paper we study the spatial structure of (near-)planetary period magnetic field oscillations in Saturn's equatorial magnetosphere. Extending previous analyses of these phenomena, we include all suitable data from the entire Cassini mission during its orbital tour of the planet so as to be able to quantify both the amplitude and phase of these field oscillations throughout Saturn's equatorial plane, to distances of 30 planetary radii. We study the structure of these field oscillations in view of both independently rotating northern and southern systems, finding spatial variations in both magnetic fields and inferred currents flowing north-south that are common to both systems. With the greatly expanded coverage of the equatorial plane achieved during the latter years of the mission, we are able to present a complete survey of dawn-dusk and day-night asymmetries in the structure of the oscillating fields and currents. We show that the general structure of the rotating currents is simpler than previously reported and that the relatively enhanced nightside equatorial fields and currents are due in part to related periodic vertical motion of Saturn's magnetotail current sheet.

  • 40.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Fraenz, M.
    Dubinin, E.
    Duru, F.
    Morgan, D.
    Witasse, O.
    Determination of local plasma densities with the MARSIS radar: Asymmetries in the high-altitude Martian ionosphere2013Inngår i: Journal of Geophysical Research: Space Physics, ISSN 2169-9380, Vol. 118, nr 10, s. 6228-6242Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a novel method for the automatic retrieval of local plasma density measurements from the Mars advanced radar for subsurface and ionospheric sounding (MARSIS) active ionospheric sounder (AIS) instrument. The resulting large data set is then used to study the configuration of the Martian ionosphere at altitudes above approximate to 300km. An empirical calibration routine is used, which relates the local plasma density to the measured intensity of multiple harmonics of the local plasma frequency oscillation, excited in the plasma surrounding the antenna in response to the transmission of ionospheric sounding pulses. Enhanced accuracy is achieved in higherdensity (n(e)>150cm(-3)) plasmas, when MARSIS AIS is able to directly measure the fundamental frequency of the local plasma oscillation. To demonstrate the usefulness of this data set, the derived plasma densities are binned by altitude and solar zenith angle in regions over weak (|B-c|<20nT) and strong (|B-c|>20nT) crustal magnetic fields, and we find clear and consistent evidence for a significant asymmetry between these two regions. We show that within the approximate to 300-1200km altitude range sampled, the median plasma density is substantially higher on the dayside in regions of relatively stronger crustal fields than under equivalent illuminations in regions of relatively weaker crustal fields. Conversely, on the nightside, median plasma densities are found to be higher in regions of relatively weaker crustal fields. We suggest that the observed asymmetry arises as a result of the modulation of the efficiency of plasma transport processes by the irregular crustal fields and the generally horizontal draped interplanetary magnetic field.

  • 41.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Opgenoorth, Hermann J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Leyser, Thomas B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Buchert, Stephan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Edberg, Niklas J. T.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Morgan, D. D.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
    Kopf, A. J.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA USA.
    Fallows, K.
    Boston Univ, Ctr Space Phys, Boston, MA USA.
    Withers, P.
    Boston Univ, Ctr Space Phys, Boston, MA USA; Boston Univ, Dept Astron, Commonwealth Ave, Boston, MA USA.
    MARSIS Observations of Field-Aligned Irregularities and Ducted Radio Propagation in the Martian Ionosphere2018Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 8, s. 6251-6263Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Knowledge of Mars's ionosphere has been significantly advanced in recent years by observations from Mars Express and lately Mars Atmosphere and Volatile EvolutioN. A topic of particular interest are the interactions between the planet's ionospheric plasma and its highly structured crustal magnetic fields and how these lead to the redistribution of plasma and affect the propagation of radio waves in the system. In this paper, we elucidate a possible relationship between two anomalous radar signatures previously reported in observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on Mars Express. Relatively uncommon observations of localized, extreme increases in the ionospheric peak density in regions of radial (cusp-like) magnetic fields and spread echo radar signatures are shown to be coincident with ducting of the same radar pulses at higher altitudes on the same field lines. We suggest that these two observations are both caused by a high electric field (perpendicular to B) having distinctly different effects in two altitude regimes. At lower altitudes, where ions are demagnetized and electrons magnetized, and recombination dominantes, a high electric field causes irregularities, plasma turbulence, electron heating, slower recombination, and ultimately enhanced plasma densities. However, at higher altitudes, where both ions and electrons are magnetized and atomic oxygen ions cannot recombine directly, the high electric field instead causes frictional heating, a faster production of molecular ions by charge exchange, and so a density decrease. The latter enables ducting of radar pulses on closed field lines, in an analogous fashion to interhemispheric ducting in the Earth's ionosphere.

  • 42.
    Andrews, David J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Stergiopoulou, Katerina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Univ Leicester, Sch Phys & Astron, Leicester, England..
    Andersson, Laila
    Eriksson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Ergun, Robert
    Pilinski, Marcin
    Electron densities and temperatures in the Martian ionosphere: MAVEN LPW observations of control by crustal fields2023Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 128, nr 3, artikkel-id e2022JA031027Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mars Express and Mars Atmosphere and Volatile Evolution (MAVEN) observations have demonstrated the influence of Mars's spatially variable crustal magnetic fields upon the configuration of the plasma in the ionosphere. This influence furthermore leads to variations in ionospheric escape, conceivably in part through the modification of the plasma density and electron temperature in the upper ionosphere. In this study, we examine MAVEN Langmuir Probe and Waves data, finding a clear correspondence between the structure of the crustal fields and both the measured electron temperatures and densities, by first constructing an "average " profile from which departures can be quantified. Electron temperatures are shown to be lower in regions of strong crustal fields over a wide altitude range. We extend previous analyses to cover the nightside ionosphere, finding the same effects present to a lesser degree, in contrast to previous studies where the opposite relationship was found between densities and crustal fields. We further determine the altitude range over which this coupling between both plasma density (and temperature) and crustal fields is effective and use measurements made by MAVEN in the solar wind to explore the dependence of this crustal field control on the coupling to the solar wind and the interplanetary magnetic field (IMF). Based on this, there is some suggestion that variations in the solar wind dynamic pressure are associated with modulation of the effects of the crustal fields on plasma density, whereas the strength of the IMF modulates the crustal fields effects on both electron densities and temperatures.

  • 43.
    Andriopoulou, M.
    et al.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Torkar, K.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Torbert, R. B.
    Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA..
    Lindqvist, P. -A
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Dorelli, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Burch, J. L.
    SW Res Inst, San Antonio, TX USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA..
    Study of the spacecraft potential under active control and plasma density estimates during the MMS commissioning phase2016Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, nr 10, s. 4858-4864Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  • 44.
    Andriopoulou, Maria
    et al.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Nakamura, Rumi
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Wellenzohn, Simon
    Karl Franzens Univ Graz, Inst Geophys Astrophys & Meteorol, Graz, Austria.
    Torkar, Klaus
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Baumjohann, Wolfgang
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA;Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
    Lindqvist, Per-Arne
    KTH Royal Inst Technol, Dept Space & Plasma Phys, Stockholm, Sweden.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Dorelli, John
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Burch, James L.
    Southwest Res Inst, San Antonio, TX USA.
    Plasma Density Estimates From Spacecraft Potential Using MMS Observations in the Dayside Magnetosphere2018Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, nr 4, s. 2620-2629Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using spacecraft potential observations with and without active spacecraft potential control (on/off) from the Magnetospheric Multiscale (MMS) mission, we estimate the average photoelectron emission as well as derive the plasma density information from spacecraft potential variations and active spacecraft potential control ion current. Such estimates are of particular importance especially during periods when the plasma instruments are not in operation and also when electron density observations with higher time resolution than the ones available from particle detectors are necessary. We compare the average photoelectron emission of different spacecraft and discuss their differences. We examine several time intervals when we performed our density estimations in order to understand the strengths and weaknesses of our data set. We finally compare our derived density estimates with the plasma density observations provided by plasma detectors onboard MMS, whenever available, and discuss the overall results. The estimated electron densities should only be used as a proxy of the electron density, complimentary to the plasma moments derived by plasma detectors, especially when the latter are turned off or when higher time resolution observations are required. While the derived data set can often provide valuable information about the plasma environment, the actual values may often be very far from the actual plasma density values and should therefore be used with caution.

  • 45.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance2015Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. 90, nr 12, artikkel-id 128005Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 10(26) ions s(-1). This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s(-1) (30 000 ton yr(-1)). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life.

    Fulltekst (pdf)
    fulltext
  • 46.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Space Physics: The Need for a Wider Perspective2022Inngår i: Frontiers in Astronomy and Space Sciences, E-ISSN 2296-987X, Vol. 9, artikkel-id 937742Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We argue that many studies in space physics would benefit from putting a detailed investigation into a wider perspective. Three examples of theoretical and observational studies are given. We argue that space physics should aim to be less of an isolated branch of science. Rather, by putting the scientific space results into a wider perspective these results will become more interesting and important than ever. We argue that diversity in a team often is favourable for work on complicated problems and helps to present the results in a wider perspective.

    Fulltekst (pdf)
    FULLTEXT01
  • 47.
    André, Mats
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Cully, Christopher M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Low-energy ions: A previously hidden solar system particle population2012Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 39, s. L03101-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ions with energies less than tens of eV originate from the Terrestrial ionosphere and from several planets and moons in the solar system. The low energy indicates the origin of the plasma but also severely complicates detection of the positive ions onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of Volts. We discuss some methods to observe low-energy ions, including a recently developed technique based on the detection of the wake behind a charged spacecraft in a supersonic flow. Recent results from this technique show that low-energy ions typically dominate the density in large regions of the Terrestrial magnetosphere on the nightside and in the polar regions. These ions also often dominate in the dayside magnetosphere, and can change the dynamics of processes like magnetic reconnection. The loss of this low-energy plasma to the solar wind is one of the primary pathways for atmospheric escape from planets in our solar system. We combine several observations to estimate how common low-energy ions are in the Terrestrial magnetosphere and briefly compare with Mars, Venus and Titan.

  • 48.
    André, Mats
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Eriksson, Anders, I
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Toledo-Redondo, Sergio
    Univ Murcia, Dept Electromagnetism & Elect, Murcia, Spain..
    The Spacecraft Wake: Interference With Electric Field Observations and a Possibility to Detect Cold Ions2021Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 126, nr 9, artikkel-id e2021JA029493Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Wakes behind spacecraft caused by supersonic drifting positive ions are common in plasmas and disturb in situ measurements. We review the impact of wakes on observations by the Electric Field and Wave double-probe instruments on the Cluster satellites. In the solar wind, the equivalent spacecraft charging is small compared to the ion drift energy and the wake effects are caused by the spacecraft body and can be compensated for. We present statistics of the direction, width, and electrostatic potential of wakes, and we compare with an analytical model. In the low-density magnetospheric lobes, the equivalent positive spacecraft charging is large compared to the ion drift energy and an enhanced wake forms. In this case observations of the geophysical electric field with the double-probe technique becomes extremely challenging. Rather, the wake can be used to estimate the flux of cold (eV) positive ions. For an intermediate range of parameters, when the equivalent charging of the spacecraft is similar to the drift energy of the ions, also the charged wire booms of a double-probe instrument must be taken into account. We discuss an example of these effects from the MMS spacecraft near the magnetopause. We find that many observed wake characteristics provide information that can be used for scientific studies. An important example is the enhanced wakes used to estimate the outflow of ionospheric origin in the magnetospheric lobes to about 10 26 cold (eV) ions/s, constituting a large fraction of the mass outflow from planet Earth.

  • 49.
    André, Mats
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Li, K.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Eriksson, Anders I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Outflow of low-energy ions and the solar cycle2015Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, nr 2, s. 1072-1085Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Magnetospheric ions with energies less than tens of eV originate from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We use two Cluster spacecraft and study low-energy ions with a technique based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the density and the outward flux in the geomagnetic tail lobes during all parts of the solar cycle. The global outflow is of the order of 10(26) ions/s and often dominates over the outflow at higher energies. The outflow increases by a factor of 2 with increasing solar EUV flux during a solar cycle. This increase is mainly due to the increased density of the outflowing population, while the outflow velocity does not vary much. Thus, the outflow is limited by the available density in the ionospheric source rather than by the energy available in the magnetosphere to increase the velocity.

  • 50.
    André, Mats
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Li, Wenya
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Toledo-Redondo, S.
    European Space Agcy ESAC, Madrid, Spain..
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Graham, Daniel B.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Norgren, Cecilia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik.
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA..
    Lindqvist, P. -A
    KTH, Stockholm, Sweden.
    Marklund, G.
    KTH, Stockholm, Sweden..
    Ergun, R.
    Univ Colorado, LASP, Boulder, CO 80309 USA..
    Torbert, R.
    Southwest Res Inst, San Antonio, TX USA.;Univ New Hampshire, Durham, NH 03824 USA..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA..
    Giles, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Chandler, M. O.
    NASA, Marshall Space Flight Ctr, Huntsville, AL USA..
    Pollock, C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Young, D. T.
    Southwest Res Inst, San Antonio, TX USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, UMR 5277, Toulouse, France..
    Saito, Y.
    Inst Space & Astronaut Sci, JAXA, Chofu, Tokyo, Japan..
    Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause2016Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, nr 13, s. 6705-6712Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.

1234567 1 - 50 of 1204
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf