Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
1234567 151 - 200 of 4208
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 151.
    Andersson, Martin G. I.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Catalán, Núria
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. ICRA, Catalan Institute of Water Research, Girona, Spain.
    Rahman, Zeeshanur
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi.
    Tranvik, Lars J.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Lindström, Eva S.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Effects of sterilization on dissolved organic carbon (DOC) composition and bacterial utilization of DOC from lakes2018In: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 82, no 2, p. 199-208Article in journal (Refereed)
    Abstract [en]

    Sterilization of dissolved organic carbon (DOC) is an essential step in research on interactions between DOC and organisms, for example where the effect of different microbial communities on DOC is studied or vice versa. However, few studies have gone beyond acknowledging that sterilization of DOC influences its characteristics. Here, we aimed to provide further knowledge that enables scientists to better tailor their sterilization methods to their research question. To meet this aim, we conducted a sterilization experiment with DOC from 4 boreal lakes treated with 4 sterilization methods, i.e. 2 filtrations (0.2 µm, 0.1 µm) and 2 autoclaving approaches (single and double autoclaving with a single pH adjustment). Quantity and spectroscopic properties of DOC, before and after sterilization, were studied, and DOC was further tested as a substrate for bacterial growth. We found that the filtration methods better preserved the different DOC measures. In contrast, autoclaving caused major inconsistent shifts in both qualitative and quantitative measures of DOC, as well as an increase of the maximum abundance of bacteria in growth experiments. Nonetheless, there remains a trade-off between retaining the quality of DOC and achieving sterile conditions. Therefore, the sterilization method of choice should be guided by the scientific question at hand.

    Download full text (pdf)
    fulltext
  • 152.
    Andersson, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Rahman, Zeeshanur
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi.
    Catalán, Núria
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Catalan Institute for Water Research (ICRA).
    Lindström, Eva
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    The relative importance of richness and BCC for DOC degradationManuscript (preprint) (Other academic)
    Abstract [en]

    The importance of biodiversity has been of primary interest for ecologist the last 20 years, giving rise to biodiversity ecosystem function (BEF) studies. Within the traditional field of ecology reoccurring patterns have emerged but within microbial ecology the importance of species richness for functioning is still poorly understood with few consistent patterns. In this study we examined the effect of species richness for dissolved organic matter degradation in lakes. This was examined within a smaller span of species richness compared to what is typically in microbial BEF experiments. Bacterial communities of reduced species richness were exposed to a range of DOC environments to test if reduced richness changed the functioning of communities and if the effect was similar among DOC environments. This was conducted in a full factorial design of 3 levels, with 6 dilutions, 5 media and 3 inocula resulting in 90 treatments. Overall, richness and community composition appeared to have effects on DOC degradation, but these effects were minor compared to the variation caused by the different DOC sources. Further, the importance of species richness varied among media and, thus, the chemical complexity of the environment influenced the biodiversity-ecosystem functioning relationship. 

  • 153.
    Andersson, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Rahman, Zeeshanur
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi.
    Catalán, Núria
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Catalan Institute for Water Research (ICRA).
    Tranvik, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Langenheder, Silke
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Lindström, Eva
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Response and effect interactions between bacterial communities and organic matterManuscript (preprint) (Other academic)
    Abstract [en]

    The interaction between bacteria and dissolved organic matter (DOM) is crucial for the global carbon cycling. Despite decades of research there are, however, few consistent patterns regarding the relationship between bacterial diversity and community composition and DOM. Here we hypothesized that one reason for such inconsistences among studies is that bacterial communities can adapt to a DOM source over time, whereby a change in the functioning of a community can be, at least partly, decoupled from its composition and diversity. To test this idea we performed a reciprocal transplant experiment with medium (i.e. DOM source) and bacterial communities from two boreal lakes. In this experiment the two communities were allowed to adapt to their indigenous and their foreign source of DOM over 42 days. Bacterial community composition (BCC) was measured throughout the experiment. In addition we measured the capacity of the communities to use DOM, in repeated short (5 days) separated bioassays. The results show a response of bacterial community composition to the DOM sources which was influenced by the origin of the community. In contrast, we could not show an effect of BCC on DOM-processing and functional performance. Indeed, communities of different origin processed the two DOM sources equally well even at the beginning of the experiment. This work demonstrates that the DOM pool can be a strong selective force for BCC but not vice versa. 

  • 154.
    Andersson, Matilda L.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Fish population responses to climate change: Causes and consequences2021Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Lake environments are heterogeneous, and animals show a variety of adaptations to deal with this heterogeneity. Fish often show intraspecific variation in diet, metabolism, and behavior, corresponding to their habitat use. Studies on climate change often ignore this heterogeneity and its importance in determining population-level responses to climate change. 

    This thesis can be broken into two interacting pieces. First, my goal was to assess how water color and temperature changes impact the size, number, and distribution of a common predator, Eurasian perch (Perca fluviatilis), in Swedish lakes. Second, I aimed to examine whether metabolism and resource use differed between lake habitats, corresponding with documented patterns of polymorphism and whether diet differences were maintained along a thermal and water color gradient. By combining the information gleaned from these studies, the overarching goal of my thesis is to better understand how climate change will impact fish populations and how intraspecific variance in these responses will impact ecosystem functioning. 

    I found that warming and browning will likely decrease fish biomass but via different mechanisms. Warming reduces average fish size through its impact on metabolism and energy requirements. Browning decreases fish abundance likely due to its negative effects on resource abundance, increasing mortality, and decreasing reproductive effort. Though warming decreases biomass at the lake level, pelagic perch abundance increases. I found that these pelagic perch have higher metabolic rates and, especially in darker lakes, rely heavily on pelagic resources. As more fish shift into the pelagic habitat, this will increase top-down pressure on pelagic resources and decrease energy transfer from littoral to pelagic habitats altering energy flow within lakes. 

    Variation in metabolic phenotype across habitats, combined with the positive scaling of metabolic rates with temperature, will likely determine which fish can persist under climate change scenarios. Studies that measure this variation rely heavily on respirometry to measure fish metabolism. I found that current respirometry methods underestimate maximum metabolic rate and suggest an updated method to improve the accuracy of future studies. 

    Overall, I conclude that habitats should be examined separately to better understand population-level responses to climate change. Perch caught in different habitats have different energy requirements and respond differently to warming and browning. These differences will affect the distribution of top-down pressure and habitat coupling within lake ecosystems, with implications for broader ecosystem functioning in the future. 

    List of papers
    1. Habitat specific impacts of warming and browning on a generalist freshwater predator
    Open this publication in new window or tab >>Habitat specific impacts of warming and browning on a generalist freshwater predator
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Mobile generalist predators are important components of community food webs because they can forage over a large spatial range and provide links that mediate ecosystem responses to climate change. However, many species show intraspecific variation in habitat and resource use. By evaluating the effects of increased temperature and water color on a predator fish living in two contiguous habitats, we can better understand how climate change effects can be mediated by specific ecotypes’ responses, and the implications for future ecosystem functioning.

    Using a space for time approach, our study examines the impact of increased temperature and water color of inland waters on European perch (Perca fluviatilis) populations, differentiating between the effects on perch inhabiting littoral and pelagic habitats. We found that littoral perch abundance decreased with increasing water color, likely as a result of decreased fecundity and prey availability. Average littoral perch size decreased with increasing temperatures reinforcing the negative effects of browning in reducing littoral perch biomass. In contrast, the biomass of pelagic perch increased with increasing temperature due to increased abundance and was not impacted by water color. Combined, this resulted in a shift towards a higher proportion of the perch population occupying the pelagic habitat in warmer lakes. These shifts in size and abundance at the lake level and between habitats are likely to impact ecosystem functioning and stability as the climate continues to change and will also affect fisheries and recreation. 

    Keywords
    Brownification, DOC, Fish, Perch, Polymorphism, Warming
    National Category
    Ecology
    Identifiers
    urn:nbn:se:uu:diva-450549 (URN)
    Funder
    Swedish Research Council Formas, Dnr. 942–2015-365
    Available from: 2021-08-16 Created: 2021-08-16 Last updated: 2021-08-16
    2. Habitat coupling is modified by dissolved organic carbon but not temperature in lake ecosystems
    Open this publication in new window or tab >>Habitat coupling is modified by dissolved organic carbon but not temperature in lake ecosystems
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Generalist predators play an essential role in lake ecosystems by linking spatially distinct habitats, a process known as habitat coupling. By eating a wide array of resources and moving between littoral and pelagic habitats, they link food webs and provide critical habitat stability. As climate change is expected to affect ecosystem stability, our attention should focus on how habitat coupling in these predator-stabilized systems is altered by climate change.

    Expected climate change effects in boreal regions are increases in temperature and dissolved organic carbon (DOC) concentrations. Therefore, we used stable isotopes and a space-for-time approach to examine the impact of DOC and temperature on resource use in a generalist predator, European perch (Perca fluviatilis), in 17 lakes in Sweden and Germany. We found that the impact of DOC on habitat coupling depended on fish ecotype, while both ecotypes showed increases in pelagic resource use, this will increase coupling by littoral fish, while decreasing coupling by pelagic fish. Though we found no direct effect of temperature on resource use, we did find that fish size, which decreases with warming, has an impact. We show that in the future, as fish size decreases and DOC increases, generalist predators will couple habitats less and have a more narrow dietary niche width. This shows that while perch will respond flexibly to changes in resource availability, stability may decrease in the process. 

    Keywords
    browning, climate change, niche width, perch, resource use, stable isotopes
    National Category
    Ecology
    Identifiers
    urn:nbn:se:uu:diva-450550 (URN)
    Funder
    Swedish Research Council Formas, Dnr. 942–2015-365
    Available from: 2021-08-16 Created: 2021-08-16 Last updated: 2021-08-16
    3. The interaction between metabolic rate, habitat choice, and resource use in a polymorphic freshwater species
    Open this publication in new window or tab >>The interaction between metabolic rate, habitat choice, and resource use in a polymorphic freshwater species
    2022 (English)In: Ecology and Evolution, E-ISSN 2045-7758, Vol. 12, no 8Article in journal (Refereed) Published
    Abstract [en]

    1.      Resource polymorphism is common across taxa and can result in alternate ecotypes with specific morphologies, feeding modes, and behaviours that increase performance in a specific habitat. This can result in high intraspecific variation in the expression of specific traits and the extent to which these traits are correlated within a single population. Although metabolic rate influences resource acquisition and the overall pace of life of individuals it is not clear how metabolic rate interact with the larger suite of traits to ultimately determine individual fitness.

    2.      We examined the relationship between metabolic rates and the major differences (habitat use, morphology, and resource use) between littoral and pelagic ecotypes of European perch (Perca fluviatilis) from a single lake in Central Sweden.

    3.      Standard metabolic rate (SMR) was significantly higher in pelagic perch but did not correlate with resource use or morphology. Maximum metabolic rate (MMR) was not correlated with any of our explanatory variables or with SMR. Aerobic scope (AS) showed the same pattern as SMR, differing across habitats, but contrary to expectations was lower in pelagic perch.

    4.      This study helps to establish a framework for future experiments further exploring the drivers of intraspecific differences in metabolism. In addition, since metabolic rates scale with temperature and determine predator energy requirements, our observed differences in SMR across habitats will help determine ecotype-specific vulnerabilities to climate change and differences in top-down predation pressure across habitats.

    Place, publisher, year, edition, pages
    John Wiley & SonsWiley Online Library, 2022
    Keywords
    intraspecific variation, metabolic rate, morphometrics, plasticity, Perca fluviatilis, resource use, respirometry, stable isotopes
    National Category
    Ecology
    Identifiers
    urn:nbn:se:uu:diva-450551 (URN)10.1002/ece3.9129 (DOI)000833916500001 ()35923943 (PubMedID)
    Funder
    Swedish Research Council Formas, Dnr. 942-2015-365
    Available from: 2021-08-16 Created: 2021-08-16 Last updated: 2024-01-17Bibliographically approved
    4. Chasing away accurate results: exhaustive chase protocols underestimate maximum metabolic rate estimates in European perch Perca fluviatilis
    Open this publication in new window or tab >>Chasing away accurate results: exhaustive chase protocols underestimate maximum metabolic rate estimates in European perch Perca fluviatilis
    2020 (English)In: Journal of Fish Biology, ISSN 0022-1112, E-ISSN 1095-8649, Vol. 97, no 6, p. 1644-1650Article in journal (Refereed) Published
    Abstract [en]

    Metabolic rates are one of many measures that are used to explain species' response to environmental change. Static respirometry is used to calculate the standard metabolic rate (SMR) of fish, and when combined with exhaustive chase protocols it can be used to measure maximum metabolic rate (MMR) and aerobic scope (AS) as well. While these methods have been tested in comparison to swim tunnels and chambers with circular currents, they have not been tested in comparison with a no‐chase control. We used a repeated‐measures design to compare estimates of SMR, MMR and AS in European perch Perca fluviatilis following three protocols: (a) a no‐chase control; (b) a 3‐min exhaustive chase; and (c) a 3‐min exhaustive chase followed by 1‐min air exposure. We found that, contrary to expectations, exhaustive chase protocols underestimate MMR and AS at 18°C, compared to the no‐chase control. This suggests that metabolic rates of other species with similar locomotorty modes or lifestyles could be similarly underestimated using chase protocols. These underestimates have implications for studies examining metabolic performance and responses to climate change scenarios. To prevent underestimates, future experiments measuring metabolic rates should include a pilot with a no‐chase control or, when appropriate, an adjusted methodology in which trials end with the exhaustive chase instead of beginning with it.

    Keywords
    aerobic scope, climate change, exhaustive chase, intermittent-flow respirometry, methods, standard metabolic rate
    National Category
    Zoology Ecology
    Identifiers
    urn:nbn:se:uu:diva-427664 (URN)10.1111/jfb.14519 (DOI)000577623500001 ()32889736 (PubMedID)
    Funder
    Swedish Research Council Formas, 942-2015-365
    Available from: 2020-12-09 Created: 2020-12-09 Last updated: 2023-10-31Bibliographically approved
    Download full text (pdf)
    UUThesis_M-L-Andersson-2021
    Download (jpg)
    presentationsbild
  • 155.
    Andersson, Matilda L.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Holmgren, Kerstin
    Eklöv, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Habitat specific impacts of warming and browning on a generalist freshwater predatorManuscript (preprint) (Other academic)
    Abstract [en]

    Mobile generalist predators are important components of community food webs because they can forage over a large spatial range and provide links that mediate ecosystem responses to climate change. However, many species show intraspecific variation in habitat and resource use. By evaluating the effects of increased temperature and water color on a predator fish living in two contiguous habitats, we can better understand how climate change effects can be mediated by specific ecotypes’ responses, and the implications for future ecosystem functioning.

    Using a space for time approach, our study examines the impact of increased temperature and water color of inland waters on European perch (Perca fluviatilis) populations, differentiating between the effects on perch inhabiting littoral and pelagic habitats. We found that littoral perch abundance decreased with increasing water color, likely as a result of decreased fecundity and prey availability. Average littoral perch size decreased with increasing temperatures reinforcing the negative effects of browning in reducing littoral perch biomass. In contrast, the biomass of pelagic perch increased with increasing temperature due to increased abundance and was not impacted by water color. Combined, this resulted in a shift towards a higher proportion of the perch population occupying the pelagic habitat in warmer lakes. These shifts in size and abundance at the lake level and between habitats are likely to impact ecosystem functioning and stability as the climate continues to change and will also affect fisheries and recreation. 

  • 156.
    Andersson, Matilda L.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics. Lund University.
    Hulthén, Kaj
    Blake, Charlie
    Brönmark, Christer
    Nilsson, P. Anders
    Linking behavioural type with cannibalism in Eurasian perch2021In: PLOS ONE, E-ISSN 1932-6203, Vol. 16, no 12, article id e0260938Article in journal (Refereed)
    Abstract [en]

    The propensity to kill and consume conspecifics (cannibalism) varies greatly between and within species, but the underlying mechanisms behind this variation remain poorly understood. A rich literature has documented that consistent behavioural variation is ubiquitous across the animal kingdom. Such inter-individual behavioural differences, sometimes referred to as personality traits, may have far-reaching ecological consequences. However, the link between predator personality traits and the propensity to engage in cannibalistic interactions remains understudied. Here, we first quantified personality in Eurasian perch (Perca fluviatilis), measured as activity (time spent moving) and sociability (time spent near conspecifics). We then gave perch of contrasting behavioural types the option to consume either conspecific or heterospecific (roach, Rutilus rutilus) prey. Individual perch characterized by a social-active behavioural phenotype (n = 5) selected roach before being cannibalistic, while asocial-inactive perch (n = 17) consumed conspecific and heterospecific prey evenly. Thus, asocial-inactive perch expressed significantly higher rates of cannibalism as compared to social-active individuals. Individual variation in cannibalism, linked to behavioural type, adds important mechanistic understanding to complex population and community dynamics, and also provides insight into the diversity and maintenance of animal personality.

    Download full text (pdf)
    fulltext
  • 157.
    Andersson, Matilda L.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Scharnweber, Kristin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Eklöv, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    The interaction between metabolic rate, habitat choice, and resource use in a polymorphic freshwater species2022In: Ecology and Evolution, E-ISSN 2045-7758, Vol. 12, no 8Article in journal (Refereed)
    Abstract [en]

    1.      Resource polymorphism is common across taxa and can result in alternate ecotypes with specific morphologies, feeding modes, and behaviours that increase performance in a specific habitat. This can result in high intraspecific variation in the expression of specific traits and the extent to which these traits are correlated within a single population. Although metabolic rate influences resource acquisition and the overall pace of life of individuals it is not clear how metabolic rate interact with the larger suite of traits to ultimately determine individual fitness.

    2.      We examined the relationship between metabolic rates and the major differences (habitat use, morphology, and resource use) between littoral and pelagic ecotypes of European perch (Perca fluviatilis) from a single lake in Central Sweden.

    3.      Standard metabolic rate (SMR) was significantly higher in pelagic perch but did not correlate with resource use or morphology. Maximum metabolic rate (MMR) was not correlated with any of our explanatory variables or with SMR. Aerobic scope (AS) showed the same pattern as SMR, differing across habitats, but contrary to expectations was lower in pelagic perch.

    4.      This study helps to establish a framework for future experiments further exploring the drivers of intraspecific differences in metabolism. In addition, since metabolic rates scale with temperature and determine predator energy requirements, our observed differences in SMR across habitats will help determine ecotype-specific vulnerabilities to climate change and differences in top-down predation pressure across habitats.

    Download full text (pdf)
    fulltext
  • 158.
    Andersson, Matilda L.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Scharnweber, Kristin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Holmgren, Kerstin
    Mehner, Thomas
    Eklöv, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Habitat coupling is modified by dissolved organic carbon but not temperature in lake ecosystemsManuscript (preprint) (Other academic)
    Abstract [en]

    Generalist predators play an essential role in lake ecosystems by linking spatially distinct habitats, a process known as habitat coupling. By eating a wide array of resources and moving between littoral and pelagic habitats, they link food webs and provide critical habitat stability. As climate change is expected to affect ecosystem stability, our attention should focus on how habitat coupling in these predator-stabilized systems is altered by climate change.

    Expected climate change effects in boreal regions are increases in temperature and dissolved organic carbon (DOC) concentrations. Therefore, we used stable isotopes and a space-for-time approach to examine the impact of DOC and temperature on resource use in a generalist predator, European perch (Perca fluviatilis), in 17 lakes in Sweden and Germany. We found that the impact of DOC on habitat coupling depended on fish ecotype, while both ecotypes showed increases in pelagic resource use, this will increase coupling by littoral fish, while decreasing coupling by pelagic fish. Though we found no direct effect of temperature on resource use, we did find that fish size, which decreases with warming, has an impact. We show that in the future, as fish size decreases and DOC increases, generalist predators will couple habitats less and have a more narrow dietary niche width. This shows that while perch will respond flexibly to changes in resource availability, stability may decrease in the process. 

  • 159.
    Andersson, Matilda L.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Sundberg, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
    Eklöv, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Chasing away accurate results: exhaustive chase protocols underestimate maximum metabolic rate estimates in European perch Perca fluviatilis2020In: Journal of Fish Biology, ISSN 0022-1112, E-ISSN 1095-8649, Vol. 97, no 6, p. 1644-1650Article in journal (Refereed)
    Abstract [en]

    Metabolic rates are one of many measures that are used to explain species' response to environmental change. Static respirometry is used to calculate the standard metabolic rate (SMR) of fish, and when combined with exhaustive chase protocols it can be used to measure maximum metabolic rate (MMR) and aerobic scope (AS) as well. While these methods have been tested in comparison to swim tunnels and chambers with circular currents, they have not been tested in comparison with a no‐chase control. We used a repeated‐measures design to compare estimates of SMR, MMR and AS in European perch Perca fluviatilis following three protocols: (a) a no‐chase control; (b) a 3‐min exhaustive chase; and (c) a 3‐min exhaustive chase followed by 1‐min air exposure. We found that, contrary to expectations, exhaustive chase protocols underestimate MMR and AS at 18°C, compared to the no‐chase control. This suggests that metabolic rates of other species with similar locomotorty modes or lifestyles could be similarly underestimated using chase protocols. These underestimates have implications for studies examining metabolic performance and responses to climate change scenarios. To prevent underestimates, future experiments measuring metabolic rates should include a pilot with a no‐chase control or, when appropriate, an adjusted methodology in which trials end with the exhaustive chase instead of beginning with it.

    Download full text (pdf)
    fulltext
  • 160. Andren, Cecilia M.
    et al.
    Rydin, Emil
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
    Toxicity of inorganic aluminium at spring snowmelt-In-stream bioassays with brown trout (Salmo trutta L.)2012In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 437, p. 422-432Article in journal (Refereed)
    Abstract [en]

    Although the acid load has decreased throughout Scandinavia, acidic soils still mobilise aluminium (Al) that is harmful to brown trout. We hypothesise that there are thresholds for Al toxicity and that the toxicity can be traced from the water content to gill accumulation and the consequential physiological effects. During snowmelt, yearlings were exposed to a gradient of pH and inorganic monomeric Al (Al-i) in humic streams to study the toxic effects and mortality. Gill Al and physiological blood analyses [haemoglobin (Hb), plasma chloride (P-Cl) and glucose (Glu)] were measured. As the water quality deteriorated, Al accumulated on the gills; Hb and Glu increased; P-Cl decreased, and mortality occurred. Moribund fish had significantly increased gill Al and Hb, suggesting that respiratory disturbances contributed to mortality. Decreased P-C and plasma availability indicated an ion regulatory disturbance and possibly circulatory collapse. Al-i should be less than 20 mu g/L, and pH higher than 5.0, to sustain healthy brown trout populations. These thresholds can be used to fine-tune lime dose, as both Al-i and pH levels have to be balanced to prevent harm in the recovering aquatic biota. Although Al is tightly linked to pH, local variation in Al availability in soil and bedrock affects the Al release and subsequent toxic Al-i episodes in some catchment areas.

  • 161. Andres, J A
    et al.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Genetic divergence of the seminal signal-receptor system in houseflies: the footprints of sexually antagonistic coevolution?2001In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 268, no 1465, p. 399-405Article in journal (Refereed)
  • 162.
    Angert, Amy L.
    et al.
    Univ British Columbia, Dept Bot & Zool, Vancouver, BC V6T 1Z4, Canada..
    Bontrager, Megan G.
    Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA..
    Ågren, Jon
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    What Do We Really Know About Adaptation at Range Edges?2020In: ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 51, 2020 / [ed] Futuyma, D J, PALO ALTO USA: ANNUAL REVIEWS, 2020, p. 341-361Chapter in book (Refereed)
    Abstract [en]

    Recent theory and empirical evidence have provided new insights regarding how evolutionary forces interact to shape adaptation at stable and transient range margins. Predictions regarding trait divergence at leading edges are frequently supported. However, declines in fitness at and beyond edges show that trait divergence has sometimes been insufficient to maintain high fitness, so identifying constraints to adaptation at range edges remains a key challenge. Indirect evidence suggests that range expansion may be limited by adaptive genetic variation, but direct estimates of genetic constraints at and beyond range edges are still scarce. Sequence data suggest increased genetic load in edge populations in several systems, but its causes and fitness consequences are usually poorly understood. The balance between maladaptive and positive effects of gene flow on fitness at range edges deserves further study. It is becoming increasingly clear that characterizations about degree of adaptation based solely on geographical peripherality are unsupported.

  • 163.
    Ankori-Karlinsky, Roi
    et al.
    Columbia Univ, Dept Ecol Evolut & Environm Biol, 1190 Amsterdam Ave, New York, NY 10027 USA..
    Hall, Jazlynn
    Columbia Univ, Dept Ecol Evolut & Environm Biol, 1190 Amsterdam Ave, New York, NY 10027 USA.;Cary Inst Ecosyst Studies, Millbrook, NY 12545 USA..
    Murphy, Lora
    Columbia Univ, Dept Ecol Evolut & Environm Biol, 1190 Amsterdam Ave, New York, NY 10027 USA..
    Muscarella, Robert
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Martinuzzi, Sebastián
    Univ Wisconsin Madison, Dept Forest & Wildlife Ecol, SILVIS Lab, 1630 Linden Dr, Madison, WI 53706 USA.;NASA Goddard Space Flight Ctr, Biospher Sci Lab, 8800 Greenbelt Rd,Code 618, Greenbelt, MD 20771 USA..
    Fahey, Robert
    Univ Connecticut, Dept Nat Resources, Storrs, CT USA.;Univ Connecticut, Ctr Environm Sci & Engn, Storrs, CT USA..
    Zimmerman, Jess K.
    Univ Puerto Rico, Dept Environm Sci, San Juan, PR 00925 USA..
    Uriarte, María
    Columbia Univ, Dept Ecol Evolut & Environm Biol, 1190 Amsterdam Ave, New York, NY 10027 USA..
    Chronic Winds Reduce Tropical Forest Structural Complexity Regardless of Climate, Topography, or Forest Age2024In: Ecosystems, ISSN 1432-9840, E-ISSN 1435-0629, Vol. 27, no 3, p. 479-491Article in journal (Refereed)
    Abstract [en]

    Tropical forests are the world’s most structurally complex ecosystems, providing key functions like biomass accumulation, which is linked to this complexity. Tropical forests are also exposed to chronic, non-severe winds, yet their effect on forest structural complexity is understudied. Here we examine drivers of forest structural complexity in Puerto Rico with a particular focus on chronic wind exposure. We used airborne light detection and ranging data collected in 2016 to quantify canopy height and rugosity (variation in height) in ~ 20,000, 0.28 ha forested sites stratified by forest age. We used random forest models to analyze variation in canopy height and rugosity as a function of chronic wind exposure, forest age, mean annual precipitation, elevation, slope (in degrees), soil type, soil available water storage, and exposure to a previous hurricane. Canopy height was driven by precipitation, forest age, and chronic wind exposure, decreasing by 2.12 m (16%) on average in wind-exposed forests across all forest ages. Canopy height increased by 4.0 m (41%) on average in forests aged 25–66 years, and by 4.0 m between sites with 1000 and 2000 mm y−1 precipitation. Canopy rugosity was driven by canopy height, precipitation, forest age, and elevation, increasing log-linearly with canopy height and precipitation, decreasing with elevation, and was highest in younger forests. Chronic wind exposure did not drive variation in canopy rugosity. Our results suggest that chronic wind exposure plays an integral role in limiting canopy height, potentially reducing aboveground carbon accumulation in older tropical forests.

  • 164.
    Anna, Sporre
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
    Utvärdering av grumlighet i miljökontrollprogram för ytvatten vid konstruktionsarbeten2015Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    It has been noticed that construction activities close to watercourses often result in turbidity values that exceed guideline values. A detailed analysis of annual reports from the Swedish infrastructure project “BanaVäg i Väst” has shown that recommended values of turbidity often are determined without consideration of natural variations in turbidity. The performance probably depends on the lack of appropriate legislation on acceptable turbidity values and on how turbidity should be monitored during construction activities. The objective of this thesis was therefore to develop a method to determine background values for turbidity as a basis for setting water system adapted reference values. In the thesis a model for turbidity was developed with agricultural area, clay content within the watershed and discharge as input variables. With the dynamic model variations in turbidity could best be explained in watercourses of watersheds less than 100 km2, but even for these watercourses the model performance remained poor. For watercourses draining larger watersheds the model performance became even poorer, most probably due to complex interactions of a variety of driving variables, of which some were not included as input variables. A recommendation is therefore a national initiative where more advanced models can be used, at least for large watercourses that are highly vulnerable, after adaption to Swedish conditions. This study clearly shows that there is an urgent need in Sweden to improve methods to monitor turbidity as well as to improve guideline values by adjusting them according to background turbidity levels.

    Download full text (pdf)
    fulltext
  • 165. Antoniazza, Sylvain
    et al.
    Kanitz, Ricardo
    Neuenschwander, Samuel
    Burri, Reto
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Gaigher, Arnaud
    Roulin, Alexandre
    Goudet, Jerome
    Natural selection in a postglacial range expansion: the case of the colour cline in the European barn owl2014In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 23, no 22, p. 5508-5523Article, review/survey (Refereed)
    Abstract [en]

    Gradients of variationor clineshave always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.

  • 166.
    Aplin, L. M.
    et al.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England.;Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA..
    Firth, J. A.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Farine, D. R.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England.;Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA.;Smithsonian Trop Res Inst, Ancon, Italy..
    Voelkl, B.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Crates, R. A.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Culina, A.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Garroway, C. J.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Hinde, C. A.
    Wageningen Univ, Dept Anim Sci, Behav Ecol Grp, NL-6700 AP Wageningen, Netherlands..
    Kidd, L. R.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Psorakis, I.
    Univ Oxford, Math Inst, Oxford, England..
    Milligan, N. D.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Radersma, R.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England.;Lund Univ, Dept Biol, Evolutionary Ecol Unit, Lund, Sweden..
    Verhelst, B. L.
    Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Sheldon, B. C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics. Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England..
    Consistent individual differences in the social phenotypes of wild great tits, Parus major2015In: Animal Behaviour, ISSN 0003-3472, E-ISSN 1095-8282, Vol. 108, p. 117-127Article in journal (Refereed)
    Abstract [en]

    Despite growing interest in animal social networks, surprisingly little is known about whether individuals are consistent in their social network characteristics. Networks are rarely repeatedly sampled; yet an assumption of individual consistency in social behaviour is often made when drawing conclusions about the consequences of social processes and structure. A characterization of such social phenotypes is therefore vital to understanding the significance of social network structure for individual fitness outcomes, and for understanding the evolution and ecology of individual variation in social behaviour more broadly. Here, we measured foraging associations over three winters in a large PIT-tagged population of great tits, and used a range of social network metrics to quantify individual variation in social behaviour. We then examined repeatability in social behaviour over both short (week to week) and long (year to year) timescales, and investigated variation in repeatability across age and sex classes. Social behaviours were significantly repeatable across all timescales, with the highest repeatability observed in group size choice and unweighted degree, a measure of gregariousness. By conducting randomizations to control for the spatial and temporal distribution of individuals, we further show that differences in social phenotypes were not solely explained by within-population variation in local densities, but also reflected fine-scale variation in social decision making. Our results provide rare evidence of stable social phenotypes in a wild population of animals. Such stable social phenotypes can be targets of selection and may have important fitness consequences, both for individuals and for their social-foraging associates.

    Download full text (pdf)
    fulltext
  • 167. Aplin, Lucy M.
    et al.
    Farine, Damien R.
    Morand-Ferron, Julie
    Cockburn, Andrew
    Thornton, Alex
    Sheldon, Ben C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
    Experimentally induced innovations lead to persistent culture via conformity in wild birds2015In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 518, no 7540, p. 538-541Article in journal (Refereed)
    Abstract [en]

    In human societies, cultural norms arise when behaviours are transmitted through social networks via high-fidelity social learning'. However, a paucity of experimental studies has meant that there is no comparable understanding of the process by which socially transmitted behaviours might spread and persist in animal populations'''. Here we show experimental evidence of the establishment of foraging traditions in a wild bird population. We introduced alternative novel foraging techniques into replicated wild sub-populations of great tits (Parus major) and used automated tracking to map the diffusion, establishment and long-term persistence of the seeded innovations. Furthermore, we used social network analysis to examine the social factors that influenced diffusion dynamics. From only two trained birds in each sub-population, the information spread rapidly through social network ties, to reach an average of 75% of individuals, with a total of 414 knowledgeable individuals performing 57,909 solutions over all replicates. The sub-populations were heavily biased towards using the technique that was originally introduced, resulting in established local traditions that were stable over two generations, despite a high population turnover. Finally, we demonstrate a strong effect of social conformity, with individuals disproportionately adopting the most frequent local variant when first acquiring an innovation, and continuing to favour social information over personal information. Cultural conformity is thought to be a key factor in the evolution of complex culture in humans''. In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, our results suggest a much broader taxonomic occurrence of such an apparently complex cultural behaviour.

  • 168.
    Appelgren, A.
    et al.
    Univ Lyon 1, CNRS, Dept Biometry & Evolutionary Biol, Villeurbanne, France.;Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, Bern, Switzerland.;Ctr IRD, MIVEGEC UMR CNRS IRD UM 5290, Montpellier, France..
    McCoy, K. D.
    Ctr IRD, MIVEGEC UMR CNRS IRD UM 5290, Montpellier, France..
    Richner, H.
    Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, Bern, Switzerland..
    Doligez, Blandine
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Univ Lyon 1, CNRS, Dept Biometry & Evolutionary Biol, Villeurbanne, France.
    Relative fitness of a generalist parasite on two alternative hosts: a cross-infestation experiment to test host specialization of the hen flea Ceratophyllus gallinae (Schrank)2016In: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 29, no 5, p. 1091-1101Article in journal (Refereed)
    Abstract [en]

    Host range is a key element of a parasite's ecology and evolution and can vary greatly depending on spatial scale. Generalist parasites frequently show local population structure in relation to alternative sympatric hosts (i.e. host races) and may thus be specialists at local scales. Here, we investigated local population specialization of a common avian nest-based parasite, the hen flea Ceratophyllus gallinae (Schrank), exploiting two abundant host species that share the same breeding sites, the great tit Parus major (Linnaeus) and the collared flycatcher Ficedula albicollis (Temminck). We performed a cross-infestation experiment of fleas between the two host species in two distinct study areas during a single breeding season and recorded the reproductive success of both hosts and parasites. In the following year, hosts were monitored again to assess the long-term impact of cross-infestation. Our results partly support the local specialization hypothesis: in great tit nests, tit fleas caused higher damage to their hosts than flycatcher fleas, and in collared flycatcher nests, flycatcher fleas had a faster larval development rates than tit fleas. However, these results were significant in only one of the two studied areas, suggesting that the location and history of the host population can modulate the specialization process. Caution is therefore called for when interpreting single location studies. More generally, our results emphasize the need to explicitly account for host diversity in order to understand the population ecology and evolutionary trajectory of generalist parasites.

  • 169.
    Appelgren, Anais S. C.
    et al.
    Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, Baltzerstr 6, Bern, Switzerland;Univ Lyon, CNRS, F-69000 Lyon, France;LBBE UMR 5558, Dept Biometry & Evolutionary Biol, Batiment Gregor Mendel,43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France;Univ Lyon 1, Dept Biometry & Evolutionary Biol, LBBE UMR 5558, Batiment Gregor Mendel,43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France;Univ Montpellier, Ctr IRD, Agropolis, MIVEGEC,CNRS,IRD, 911 Ave,BP 64501, F-34000 Montpellier, France.
    Saladin, Verena
    Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, Baltzerstr 6, Bern, Switzerland.
    Richner, Heinz
    Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, Baltzerstr 6, Bern, Switzerland.
    Doligez, Blandine
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Univ Lyon, CNRS, F-69000 Lyon, France;LBBE UMR 5558, Dept Biometry & Evolutionary Biol, Batiment Gregor Mendel,43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France;Univ Lyon 1, Dept Biometry & Evolutionary Biol, LBBE UMR 5558, Batiment Gregor Mendel,43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France.
    McCoy, Karen D.
    Univ Montpellier, Ctr IRD, Agropolis, MIVEGEC,CNRS,IRD, 911 Ave,BP 64501, F-34000 Montpellier, France.
    Gene flow and adaptive potential in a generalist ectoparasite2018In: BMC Evolutionary Biology, E-ISSN 1471-2148, Vol. 18, article id 99Article in journal (Refereed)
    Abstract [en]

    Background: In host-parasite systems, relative dispersal rates condition genetic novelty within populations and thus their adaptive potential. Knowledge of host and parasite dispersal rates can therefore help us to understand current interaction patterns in wild populations and why these patterns shift over time and space. For generalist parasites however, estimates of dispersal rates depend on both host range and the considered spatial scale. Here, we assess the relative contribution of these factors by studying the population genetic structure of a common avian ectoparasite, the hen flea Ceratophyllus gallinae, exploiting two hosts that are sympatric in our study population, the great tit Paws major and the collared flycatcher Ficedula albicollis. Previous experimental studies have indicated that the hen flea is both locally maladapted to great tit populations and composed of subpopulations specialized on the two host species, suggesting limited parasite dispersal in space and among hosts, and a potential interaction between these two structuring factors. Results: C gallinae fleas were sampled from old nests of the two passerine species in three replicate wood patches and were genotyped at microsatellite markers to assess population genetic structure at different scales (among individuals within a nest among nests and between host species within a patch and among patches). As expected, significant structure was found at all spatial scales and between host species, supporting the hypothesis of limited dispersal in this parasite. Clustering analyses and estimates of relatedness further suggested that inbreeding regularly occurs within nests. Patterns of isolation by distance within wood patches indicated that flea dispersal likely occurs in a stepwise manner among neighboring nests. From these data, we estimated that gene flow in the hen flea is approximately half that previously described for its great tit hosts. Conclusion: Our results fall in line with predictions based on observed patterns of adaptation in this host-parasite system, suggesting that parasite dispersal is limited and impacts its adaptive potential with respect to its hosts. More generally, this study sheds light on the complex interaction between parasite gene flow, local adaptation and host specialization within a single host-parasite system.

    Download full text (pdf)
    fulltext
  • 170.
    Apuli, Rami-Petteri
    et al.
    Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala BioCtr, Dept Plant Biol, Uppsala, Sweden..
    Richards, Thomas J.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala BioCtr, Dept Plant Biol, Uppsala, Sweden..
    Rendon-Anaya, Martha
    Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala BioCtr, Dept Plant Biol, Uppsala, Sweden..
    Karacic, Almir
    Swedish Univ Agr Sci, Inst Crop Prod Ecol, Uppsala, Sweden..
    Rönnberg-Wästljung, Ann-Christin
    Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala BioCtr, Dept Plant Biol, Uppsala, Sweden..
    Ingvarsson, Pär K.
    Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala BioCtr, Dept Plant Biol, Uppsala, Sweden..
    The genetic basis of adaptation in phenology in an introduced population of Black Cottonwood (Populus trichocarpa, Torr. & Gray)2021In: BMC Plant Biology, E-ISSN 1471-2229, Vol. 21, article id 317Article in journal (Refereed)
    Abstract [en]

    Background: Entering and exiting winter dormancy present important trade-offs between growth and survival at northern latitudes. Many forest trees display local adaptation across latitude in traits associated with these phenology transitions. Transfers of a species outside its native range introduce the species to novel combinations of environmental conditions potentially requiring different combinations of alleles to optimize growth and survival. In this study, we performed genome wide association analyses and a selection scan in a P. trichocarpa mapping population derived from crossings between clones collected across the native range and introduced into Sweden. GWAS analyses were performed using phenotypic data collected across two field seasons and in a controlled phytotron experiment.

    Results: We uncovered 584 putative candidate genes associated with spring and autumn phenology traits as well as with growth. Many regions harboring variation significantly associated with the initiation of leaf shed and leaf autumn coloring appeared to have been evolving under positive selection in the native environments of P. trichocarpa. A comparison between the candidate genes identified with results from earlier GWAS analyses performed in the native environment found a smaller overlap for spring phenology traits than for autumn phenology traits, aligning well with earlier observations that spring phenology transitions have a more complex genetic basis than autumn phenology transitions.

    Conclusions: In a small and structured introduced population of P. trichocarpa, we find complex genetic architectures underlying all phenology and growth traits, and identify multiple putative candidate genes despite the limitations of the study population.

    Download full text (pdf)
    FULLTEXT01
  • 171. Arandjelovic, M.
    et al.
    Guschanski, Katerina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
    Schubert, G.
    Harris, T. R.
    Thalmann, O.
    Siedel, H.
    Vigilant, L.
    Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples2009In: Molecular Ecology Resources, ISSN 1755-098X, E-ISSN 1755-0998, Vol. 9, no 1, p. 28-36Article in journal (Refereed)
    Abstract [en]

    Many studies in molecular ecology rely upon the genotyping of large numbers of low‐quantity DNA extracts derived from noninvasive or museum specimens. To overcome low amplification success rates and avoid genotyping errors such as allelic dropout and false alleles, multiple polymerase chain reaction (PCR) replicates for each sample are typically used. Recently, two‐step multiplex procedures have been introduced which drastically increase the success rate and efficiency of genotyping. However, controversy still exists concerning the amount of replication needed for suitable control of error. Here we describe the use of a two‐step multiplex PCR procedure that allows rapid genotyping using at least 19 different microsatellite loci. We applied this approach to quantified amounts of noninvasive DNAs from western chimpanzee, western gorilla, mountain gorilla and black and white colobus faecal samples, as well as to DNA from ~100‐year‐old gorilla teeth from museums. Analysis of over 45 000 PCRs revealed average success rates of > 90% using faecal DNAs and 74% using museum specimen DNAs. Average allelic dropout rates were substantially reduced compared to those obtained using conventional singleplex PCR protocols, and reliable genotyping using low (< 25 pg) amounts of template DNA was possible. However, four to five replicates of apparently homozygous results are needed to avoid allelic dropout when using the lowest concentration DNAs (< 50 pg/reaction), suggesting that use of protocols allowing routine acceptance of homozygous genotypes after as few as three replicates may lead to unanticipated errors when applied to low‐concentration DNAs.

  • 172.
    Arbuthnott, Devin
    et al.
    Univ British Columbia, Dept Zool, 4200-6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada.;Univ British Columbia, Biodivers Res Ctr, 4200-6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada..
    Mautz, Brian S.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Rundle, Howard D.
    Univ Ottawa, Dept Biol, Ottawa, ON, Canada..
    Rugged fitness landscapes and by-product adaptation in experimental populations of Drosophila melanogaster2018In: Evolutionary Ecology Research, ISSN 1522-0613, E-ISSN 1937-3791, Vol. 19, no 1, p. 15-28Article in journal (Refereed)
    Abstract [en]

    Background: While the concept of the fitness landscape is central to evolutionary theory, empirical characterizations of fitness landscapes have remained difficult. Recently, a number of laboratory experiments using microbes have suggested that fitness landscapes are often rugged, though there is some variation across environments and species. However, there have been very few characterizations of fitness landscapes in sexual organisms, making it unclear whether the conclusions from studies of microbes are applicable to other groups. Questions: Are fitness landscapes smooth or rugged in simplified laboratory environments for sexual organisms? How does landscape topography influence patterns of adaptation? Methods: We conducted a series of experiments using replicate populations of Drosophila melanogaster adapted to either cadmium-or ethanol-enriched food to characterize the fitness and phenotypes of these populations in a simplified laboratory environment (ethanol-enriched media). Results: We found that replicate populations adapted to different laboratory environments have diverged phenotypically in physiology, mating behaviour, and offspring production in alternate environments. However, both ethanol-and cadmium-adapted populations show high fitness in the ethanol-enriched environment relative to their founding population, and cadmium-adapted males actually outcompete ethanol-adapted males for mates in an ethanol environment. Conclusions: Our data indicate that the simplified ethanol-enriched medium represents a rugged fitness landscape, and that alternately adapted populations occupy different fitness peaks on this landscape. Because cadmium-adapted populations were never exposed to ethanol previously, it appears that these populations adapted to ethanol as a by-product of adaptation to their cadmium-enriched environment. Therefore, even in simplified laboratory environments, we find evidence for rugged fitness landscapes, and the overlap of fitness peaks on the phenotypic landscape allowed for by-product adaptation.

  • 173. Arce, Fernando
    et al.
    Orizaola, German
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Population and Conservation Biology.
    Navedo, Juan G.
    Storm petrel's breeding skipping in response to oil-spill pollution: Raising concerns over Zabala et al. (2011) methodological approach2011In: Marine Pollution Bulletin, ISSN 0025-326X, E-ISSN 1879-3363, Vol. 62, no 11, p. 2576-2577Article in journal (Refereed)
  • 174. Archer, C. R.
    et al.
    Zajitschek, Felix
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal Ecology.
    Sakaluk, S. K.
    Royle, N. J.
    Hunt, J.
    Sexual selection affects the evolution of lifespan and ageing in the decorated cricket gryllodes sigillatus2012In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 66, no 10, p. 3088-3100Article in journal (Refereed)
    Abstract [en]

    Recent work suggests that sexual selection can influence the evolution of ageing and lifespan by shaping the optimal timing and relative costliness of reproductive effort in the sexes. We used inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age-dependent reproductive effort, lifespan, and ageing within and between the sexes. Sexual selection theory predicts that males should die sooner and age more rapidly than females. However, a reversal of this pattern may be favored if reproductive effort increases with age in males but not in females. We found that male calling effort increased with age, whereas female fecundity decreased, and that males lived longer and aged more slowly than females. These divergent life-history strategies were underpinned by a positive genetic correlation between early-life reproductive effort and ageing rate in both sexes, although this relationship was stronger in females. Despite these sex differences in life-history schedules, age-dependent reproductive effort, lifespan, and ageing exhibited strong positive intersexual genetic correlations. This should, in theory, constrain the independent evolution of these traits in the sexes and may promote intralocus sexual conflict. Our study highlights the importance of sexual selection to the evolution of sex differences in ageing and lifespan in G. sigillatus.

  • 175.
    Arct, Aneta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Polish Acad Sci, Inst Systemat & Evolut Anim, Ul Slawkowska 17, PL-31016 Krakow, Poland..
    Drobniak, Szymon M.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.;Univ New South Wales, Sch Biol Environm & Earth Sci, Evolut & Ecol Res Ctr, Kensington, NSW 2052, Australia..
    Dubiec, Anna
    Polish Acad Sci, Museum & Inst Zool, Wilcza 64, PL-00679 Warsaw, Poland..
    Martyka, Rafal
    Polish Acad Sci, Inst Nat Conservat, Mickiewicza 33, PL-31120 Krakow, Poland..
    Sudyka, Joanna
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Gustafsson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cichon, Mariusz
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    The interactive effect of ambient temperature and brood size manipulation on nestling body mass in blue tits: an exploratory analysis of a long-term study2022In: Frontiers in Zoology, E-ISSN 1742-9994, Vol. 19, no 1, article id 9Article in journal (Refereed)
    Abstract [en]

    Background Relatively few studies have examined the interactive effects of ecological factors on physiological responses in wild animals. Nearly all of them have been short-term investigations that did not include experimental manipulations, limiting our ability to understand how climate change will affect natural populations. Using a 10-year brood size manipulation experiment in wild blue tits (Cyanistes caeruleus), we quantified the impact of weather conditions and brood competition on the body mass and structural size (tarsus length) of nestlings just prior to leaving the nest. Results We found that variation in nestling body mass on day 14 after hatching was explained by an interactive effect between average ambient temperature experienced during nestling period and brood size treatment. Specifically, in control broods nestling body mass was correlated with temperature in a non-linear manner (concave) with the vertex point (maximum body mass) at ca. 13 degrees C. In contrast, in enlarged broods nestling body mass permanently increased (also non-linearly) as temperature advanced. Conclusions Our results highlight the importance of considering the effects of brood rearing conditions alongside other environmental factors experienced during growth while investigating early-life environmental effects on body condition.

    Download full text (pdf)
    FULLTEXT01
  • 176.
    Arct, Aneta
    et al.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.
    Drobniak, Szymon M.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.
    Mellinger, Samantha
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.
    Gustafsson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cichon, Mariusz
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.
    Parental genetic similarity and offspring performance in blue tits in relation to brood size manipulation2019In: Ecology and Evolution, E-ISSN 2045-7758, Vol. 9, no 18, p. 10085-10091Article in journal (Refereed)
    Abstract [en]

    In birds, as in many other taxa, higher genetic similarity of mates has long been known to reduce offspring fitness. To date, the majority of avian studies have focused on examination whether the genetic similarity of social mates predicts hatching success. Yet, increased genetic similarity of mates may also reduce offspring fitness during later life stages, including the nestling period and beyond. Here, we investigated whether parental genetic similarity influences offspring performance using data from free-living blue tits (Cyanistes caeruleus) collected across three breeding seasons. Additionally, we tested whether brood size manipulation affects the magnitude and direction of the relationship between genetic similarity of mates and offspring performance. Sixteen microsatellite markers were used to measure genetic similarity between biological parents. We found that the genetic similarity of parents negatively affects offspring immune response and this effect was independent of the experimental brood size manipulation.

    Download full text (pdf)
    fulltext
  • 177.
    Arct, Aneta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics. Polish Acad Sci, Inst Systemat & Evolut Anim, Ul Slawkowska 17, PL-31016 Krakow, Poland..
    Drobniak, Szymon M.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.;Univ New South Wales, Sch Biol Environm & Earth Sci, Evolut & Ecol Res Ctr, Kensington, NSW 2052, Australia..
    Mellinger, Samantha
    Mol Ecol & Evolut Lab, Dept Biol, Ecol Bldg, SE-22362 Lund, Sweden..
    Martyka, Rafal
    Polish Acad Sci, Inst Nat Conservat, Mickiewicza 33, PL-31120 Krakow, Poland..
    Gustafsson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cichon, Mariusz
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Extra-pair paternity in Blue Tits (Cyanistes caeruleus) depends on the combination of social partners' age2022In: Ibis, ISSN 0019-1019, E-ISSN 1474-919X, Vol. 164, no 2, p. 388-395Article in journal (Refereed)
    Abstract [en]

    There is growing evidence that engaging in extra-pair copulations may be a strategy by which females can modify their initial mate choice if they are constrained by primary choice of the social mate. Several factors such as genetic similarity and adult phenotypic traits can affect extra-pair paternity (EPP) patterns, but the relative importance of these factors may vary among species. Moreover, interactive effects of male and female characteristics have rarely been considered. Here, we aimed to study how multiple parameters characterizing a breeding pair (i.e. genetic similarity between mates, partners' age and laying date) predict the occurrence of EPP at the brood level. The study uses 4 years of data from a wild population of Blue Tits Cyanistes caeruleus. Contrary to predictions of the inbreeding avoidance hypothesis, we did not find a positive relationship between the occurrence of EPP and the relatedness of social mates. We also found that the probability of EPP was unrelated to laying date. However, EPP was predicted by an interaction of social partners' ages. Specifically, EPP was less likely when old females were paired with old males in comparison to old females paired to young males. Our study suggests that the occurrence of EPP may be the result of behavioural interactions in which both male and female age are important for determining the outcome. Our results confirm the importance of considering the interactions of male and female characteristics in studies investigating EPP patterns.

    Download full text (pdf)
    fulltext
  • 178. Arct, Aneta
    et al.
    Drobniak, Szymon M.
    Podmokla, Edyta
    Gustafson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cichon, Mariusz
    Benefits of extra-pair mating may depend on environmental conditions-an experimental study in the blue tit (Cyanistes caeruleus)2013In: Behavioral Ecology and Sociobiology, ISSN 0340-5443, E-ISSN 1432-0762, Vol. 67, no 11, p. 1809-1815Article in journal (Refereed)
    Abstract [en]

    Extra-pair mating constitutes a relatively common reproductive strategy in many socially monogamous bird species. This strategy may considerably improve reproductive success of males, but female benefits from extra-pair matings still remain unclear and empirical evidence is scarce. This may be because genetic benefits of extra-pair mating are not always revealed. It is possible that they are shown only in unfavourable environmental conditions and hence problems arise with detecting differences between within- and extra-pair offspring whose performance is measured under favourable conditions. In order to test this prediction, we manipulated environmental conditions by altering brood sizes of blue tits and compared phenotypic characteristics of within- and extra-pair offspring in mixed-paternity broods. We found that extra-pair young exhibited a higher response to phytohemagglutinin in comparison to within-pair young, but this was only observed among nestlings from experimentally enlarged broods. These results indicate that genetic benefits may interact with the environment, and thus benefits of extra-pair mating are likely to become visible only when conditions are relatively unfavourable.

    Download full text (pdf)
    fulltext
  • 179.
    Arct, Aneta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Polish Acad Sci, Inst Systemat & Evolut Anim, Ul Slawkowska 17, PL-31016 Krakow, Poland.
    Martyka, Rafal
    Polish Acad Sci, Inst Nat Conservat, Mickiewicza 33, PL-31120 Krakow, Poland..
    Drobniak, Szymon M.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.;Univ New South Wales, Evolut & Ecol Res Ctr, Sch Biol Environm & Earth Sci, Kensington 2052, Australia..
    Gustafsson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cichoń, Mariusz
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Temperature variability is associated with the occurrence of extrapair paternity in blue tits2024In: Behavioral Ecology, ISSN 1045-2249, E-ISSN 1465-7279, Vol. 35, no 1, article id arad106Article in journal (Refereed)
    Abstract [en]

    In birds, extrapair paternity (EPP) constitutes an alternative mating strategy, with potentially important fitness consequences for both males and females and their offspring. Several factors have been identified that can influence the occurrence of EPP, but the role of environmental variability has so far received relatively little attention. Using long-term data set from a wild population of the blue tit (Cyanistes cearuleus), we assess the importance of ambient temperature in modulating the levels of extrapair paternity. Here, we showed that the variability of local thermal conditions affects the occurrence of EPP. Specifically, we found that the probability of EPP increased with rising variability in ambient temperature experienced by females prior to egg laying. This pattern is consistent with an idea of plastic female responses to unpredictable environments. Our results suggest that extrapair mating may represent an adaptive behavioral strategy to compensate for the potential negative effects of unstable environmental conditions.

  • 180.
    Arct, Aneta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Polish Acad Sci, Inst Systemat & Evolut Anim, Ul Slawkowska 17, PL-31016 Krakow, Poland..
    Martyka, Rafal
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Polish Acad Sci, Inst Nat Conservat, Mickiewicza 33, PL-31120 Krakow, Poland..
    Drobniak, Szymon M.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland.;Evolut & Ecol Res Ctr, Kensington, NSW 2052, Australia.;Univ New South Wales, Sch Biol Environm & Earth Sci, Kensington, NSW 2052, Australia..
    Oles, Wioleta
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Dubiec, Anna
    Polish Acad Sci, Museum & Inst Zool, Wilcza 64, PL-00679 Warsaw, Poland..
    Gustafsson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Effects of elevated nest box temperature on incubation behaviour and offspring fitness-related traits in the Collared Flycatcher Ficedula albicollis2022In: Journal of Ornithology, ISSN 2193-7192, E-ISSN 2193-7206, Vol. 163, p. 263-272Article in journal (Refereed)
    Abstract [en]

    Ambient temperature experienced by an animal during development or subsequently as an adult can affect many aspects of its behaviour and life-history traits. In birds, egg incubation is a vital component of reproduction and parental care. Several studies have suggested that environmental factors (such as nest microclimate) can influence the ability of incubating parents to maintain suitable conditions for embryo development. Here, we manipulated the developmental conditions of embryos through a modification of nest box thermal microclimate to investigate female incubation behaviour and its impact on offspring fitness-related traits in a wild population of the Collared Flycatcher (Ficedula albicollis). The temperature in experimental nests was increased using a heat-pack placed under the roof of a nest box, resulting in an average temperature increase of 2.5 degrees C, which corresponds to projected climate change scenarios. We demonstrated that females from nests with elevated temperature spent less time in the nest box during egg incubation and had more off-bouts than females from control nests. Moreover, we found that offspring from the experimentally heated nests had larger body mass at fledging in comparison to the control ones. Our study indicates that nest microclimate during the incubation period affects female incubation behaviour and offspring quality, indicating that environmental variation in nest temperature early in ontogeny can have important and long-lasting fitness consequences.

    Download full text (pdf)
    FULLTEXT01
  • 181.
    Arct, Aneta
    et al.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Sudyka, Joanna
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Podmoka, Edyta
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Drobniak, Szymon M.
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Gustafsson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cichon, Mariusz
    Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland..
    Heterozygosity-fitness correlations in blue tit nestlings (Cyanistis caeruleus) under contrasting rearing conditions2017In: Evolutionary Ecology, ISSN 0269-7653, E-ISSN 1573-8477, Vol. 31, no 5, p. 803-814Article in journal (Refereed)
    Abstract [en]

    Understanding the relation between genetic variation and fitness remains a key question in evolutionary biology. Although heterozygosity has been reported to correlate with many fitness-related traits, the strength of the heterozygosity-fitness correlations (HFCs) is usually weak and it is still difficult to assess the generality of these associations in natural populations. It has been suggested that HFCs may become meaningful only under particular environmental conditions. Moreover, existing evidence suggests that HFCs may also differ between sexes. The aim of this study was to investigate correlations between heterozygosity in neutral markers (microsatellites) and fitness-related traits in a natural population of blue tits (Cyanistes caeruleus). Additionally, we tested whether sex and environmental conditions may influence the magnitude and direction of HFCs. We found a positive relationship between heterozygosity and body mass of 14 days post-hatching nestlings, but only among females. Our results suggest that the correlation between heterozygosity and nestling body mass observed among female offspring could be attributed to within-brood effects. We failed to find any evidence that environmental conditions as simulated by brood size manipulation affect HFCs.

    Download full text (pdf)
    fulltext
  • 182. Arkani, Samara
    et al.
    Cao, Jia
    Lundin, Johanna
    Nilsson, Daniel
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Barker, Gillian
    Holmdahl, Gundela
    Clementsson Kockum, Christina
    Matsson, Hans
    Nordenskjöld, Agneta
    Evaluation of the ISL1 gene in the pathogenesis of bladder exstrophy in a Swedish cohort2018In: Human genome variation, ISSN 2054-345X, Vol. 5, no 1, article id 18009Article in journal (Refereed)
    Abstract [en]

    Bladder exstrophy is a congenital closure defect of the urinary bladder with a profound effect on morbidity. Although the malformation is usually sporadic, a genetic background is supported by an increased recurrence risk in relatives, higher concordance rates in monozygotic twins and several associated chromosomal aberrations. Recently, the ISL1 gene was presented as a candidate gene for bladder exstrophy and epispadias complex (BEEC) development in two different studies. In our study, we screened for genetic variants in the ISL1 gene in DNA from 125 Swedish patients using Sanger sequencing and array-CGH analysis. In addition, we evaluated ISL1 expression in RNA of human bladder during embryonic and fetal weeks 5–10 relative to that in lung tissue (week 9). In total, 21 single-nucleotide variants were identified, including a potentially novel missense variant, c.137C>G p.(Ala46Gly), substituting a conserved amino acid. This variant was inherited from an unaffected mother. No structural variants were identified. RNA sequencing revealed ISL1 mRNA expression during the critical time frame of human bladder development. In conclusion, we did not detect any known or likely pathogenic variants in the ISL1 gene in 125 Swedish BEEC patients, indicating that variation in the ISL1 gene is not a common genetic mechanism of BEEC development in the Swedish population.

    Download full text (pdf)
    fulltext
  • 183. Armbruster, W. Scott
    et al.
    Hansen, Thomas F.
    Pélabon, Christophe
    Pérez-Barrales, Rocio
    Maad, Johanne
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    The adaptive accuracy of flowers: measurement and microevolutionary patterns2009In: Annals of Botany, ISSN 0305-7364, E-ISSN 1095-8290, Vol. 103, no 9, p. 1529-1545Article in journal (Refereed)
  • 184.
    Armisen, David
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France..
    Viala, Severine
    Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France..
    Silva Cordeiro, Isabelle da Rocha
    Fundacao Oswaldo Cruz, Lab Biodiversidade Entomol, Inst Oswaldo Cruz, BR-21040900 Rio De Janeiro, RJ, Brazil..
    Johan Crumiere, Antonin Jean
    Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France..
    Hendaoui, Elisa
    Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France..
    Le Bouquin, Augustin
    Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France.;Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada..
    Duchemin, Wandrille
    Univ Basel, Ctr Sci Comp SciCORE, CH-4056 Basel, Switzerland..
    Santos, Emilia
    Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France.;Univ Cambridge, Dept Zool, Downing St Cambridge, Cambridge CB2 3EJ, England..
    Toubiana, William
    Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France.;Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland..
    Vargas-Lowman, Aidamalia
    Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France.;Univ Panama, Estafeta Univ, Dept Genet & Biol Mol, Panama City, Panama..
    Burguez Floriano, Carla Fernanda
    Fundacao Oswaldo Cruz, Lab Biodiversidade Entomol, Inst Oswaldo Cruz, BR-21040900 Rio De Janeiro, RJ, Brazil..
    Polhemus, Dan A.
    Bernice P Bishop Museum, Dept Nat Sci, 1525 Bernice St, Honolulu, HI 96817 USA..
    Wang, Yan-Hui
    Sun Yat Sen Univ, Sch Life Sci, 135 Xingangxi Rd, Guangzhou 510275, Guangdong, Peoples R China..
    Rowe, Locke
    Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada..
    Figueiredo Moreira, Felipe Ferraz
    Fundacao Oswaldo Cruz, Lab Biodiversidade Entomol, Inst Oswaldo Cruz, BR-21040900 Rio De Janeiro, RJ, Brazil..
    Khila, Abderrahman
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Genom Fonct Lyon,Unite Mixte Rech 5242,Ecole, F-69007 Lyon, France..
    Transcriptome-based phylogeny of the semi-aquatic bugs (Hemiptera Heteroptera: Gerromorpha) reveals patterns of lineage expansion in a series of new adaptive zones2022In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 39, no 11, article id msac229Article in journal (Refereed)
    Abstract [en]

    Key innovations enable access to new adaptive zones and are often linked to increased species diversification. As such, innovations have attracted much attention, yet their concrete consequences on the subsequent evolutionary trajectory and diversification of the bearing lineages remain unclear. Water striders and relatives (Hemiptera: Heteroptera: Gerromorpha) represent a monophyletic lineage of insects that transitioned to live on the water-air interface and that diversified to occupy ponds, puddles, streams, mangroves and even oceans. This lineage offers an excellent model to study the patterns and processes underlying species diversification following the conquest of new adaptive zones. However, such studies require a reliable and comprehensive phylogeny of the infraorder. Based on whole transcriptomic datasets of 97 species and fossil records, we reconstructed a new phylogeny of the Gerromorpha that resolved inconsistencies and uncovered strong support for previously unknown relationships between some important taxa. We then used this phylogeny to reconstruct the ancestral state of a set of adaptations associated with water surface invasion (fluid locomotion, dispersal and transition to saline waters) and sexual dimorphism. Our results uncovered important patterns and dynamics of phenotypic evolution, revealing how the initial event of water surface invasion enabled multiple subsequent transitions to new adaptive zones on the water surfaces. This phylogeny and the associated transcriptomic datasets constitute highly valuable resources, making Gerromorpha an attractive model lineage to study phenotypic evolution.

    Download full text (pdf)
    fulltext
  • 185.
    Arndt, D. S.
    et al.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Blunden, J.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Dunn, R. J. H.
    Met Off Hadley Ctr, Exeter, Devon, England.
    Aaron-Morrison, Arlene P.
    Trinidad & Tobago Meteorol Serv, Piarco, Trinid & Tobago.
    Abdallah, A.
    Agence Natl Aviat Civile & Meteorol, Moroni, Comoros.
    Ackerman, Steven A.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Adler, Robert
    Univ Maryland, College Pk, MD USA.
    Alfaro, Eric J.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Allan, Richard P.
    Univ Reading, Reading, Berks, England.
    Allan, Rob
    Met Off Hadley Ctr, Exeter, Devon, England.
    Alvarez, Luis A.
    Inst Hidrol Meteorol & Estudios Ambientales Colom, Bogota, Colombia.
    Alves, Lincoln M.
    Inst Nacl Pesquisas Espaciais, Ctr Ciencias Sistema Terrestre, Sao Paulo, Brazil.
    Amador, Jorge A.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Andreassen, L. M.
    Norwegian Water Resources & Energy Directorate, Sect Glaciers Ice & Snow, Oslo, Norway.
    Arce, Dayana
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Argueez, Anthony
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Arndt, Derek S.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Arzhanova, N. M.
    Russian Inst Hydrometeorol Informat, Obninsk, Russia.
    Augustine, John
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Awatif, E. M.
    Egyptian Meteorol Author, Cairo Numer Weather Predict, Dept Seasonal Forecast & Climate Res, Cairo, Egypt.
    Azorin-Molina, Cesar
    Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden.
    Baez, Julian
    Direcc Meteorol & Hidrol DINAC, Asuncion, Paraguay.
    Bardin, M. U.
    Islamic Republ Iran Meteorol Org, Tehran, Iran.
    Barichivich, Jonathan
    Ctr Climate & Resilience Res, Santiago, Chile;Pontificia Univ Catolica Valparaiso, Inst Geog, Valparaiso, Chile;Univ Austral Chile, Inst Conservac Biodiversidad & Terr, Valdivia, Chile.
    Baringer, Molly O.
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Barreira, Sandra
    Argentine Naval Hydrog Serv, Buenos Aires, DF, Argentina.
    Baxter, Stephen
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Beck, H. E.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08536 USA.
    Becker, Andreas
    Deutsch Wetterdienst, Global Precipitat Climatol Ctr, Offenbach, Germany.
    Bedka, Kristopher M.
    NASA Langley Res Ctr, Hampton, VA USA.
    Behrenfeld, Michael J.
    Oregon State Univ, Corvallis, OR USA.
    Bell, Gerald D.
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Belmont, M.
    Seychelles Natl Meteorol Serv, Pointe Larue, Mahe, Seychelles.
    Benedetti, Angela
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Bernhard, G. H.
    Biospher Instruments, San Diego, CA USA.
    Berrisford, Paul
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Berry, David I.
    Natl Oceanog Ctr, Southampton, Hants, England.
    Bettolli, Maria L.
    Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ciencias Atmosfera & Oceanos, Buenos Aires, DF, Argentina.
    Bhatt, U. S.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Bidegain, Mario
    Inst Uruguayo Meteorol, Montevideo, Uruguay.
    Biskaborn, B.
    Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Potsdam, Germany.
    Bissolli, Peter
    Deutscher Wetterdienst, WMO RA VI Reg Climate Ctr Network, Offenbach, Germany.
    Bjerke, J.
    Norwegian Inst Nat Res, Tromso, Norway.
    Blake, Eric S.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Blunden, Jessica
    Bosilovich, Michael G.
    NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA.
    Boucher, Olivier
    CNRS UPMC, Inst Pierre Simon Laplace, Paris, France.
    Boudet, Dagne
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Box, J. E.
    Geol Survey Denmark & Greenland, Copenhagen, Denmark.
    Boyer, Tim
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Braathen, Geir O.
    WMO Atmospher Environm Res Div, Geneva, Switzerland.
    Brimelow, Julian
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Bromwich, David H.
    Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH USA.
    Brown, R.
    Environm & Climate Change Canada, Climate Res Div, Montreal, PQ, Canada.
    Buehler, S.
    Univ Hamburg, Hamburg, Germany.
    Bulygina, Olga N.
    Russian Inst Hydrometeorol Informat, Obninsk, Russia.
    Burgess, D.
    Geol Survey Canada, Ottawa, ON, Canada.
    Calderon, Blanca
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica.
    Camargo, Suzana J.
    Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
    Campbell, Jayaka D.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Cappelen, J.
    Danish Meteorol Inst, Copenhagen, Denmark.
    Caroff, P.
    RSMC La Reunion, Meteo France, La Reunion, France.
    Carrea, Laura
    Univ Reading, Dept Meteorol, Reading, England.
    Carter, Brendan R.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA;Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA USA.
    Chambers, Don P.
    Univ S Florida, Coll Marine Sci, St Petersburg, FL USA.
    Chandler, Elise
    Bur Meteorol, Melbourne, Vic, Australia.
    Cheng, Ming-Dean
    Natl Taiwan Univ, Taipei, Taiwan;Cent Weather Bur, Taipei, Taiwan.
    Christiansen, Hanne H.
    Univ Ctr Svalbard, Dept Geol, Longyearbyen, Norway.
    Christy, John R.
    Univ Alabama Huntsville, Huntsville, AL USA.
    Chung, Daniel
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Chung, E. -S
    Clem, Kyle R.
    Victoria Univ Wellington, Sch Geography Environm & Earth Sci, Wellington, New Zealand.
    Coelho, Caio A. S.
    CPTEC INPE, Ctr Weather Forecasts & Climate Studies, Cachoeira Paulista, Brazil.
    Coldewey-Egbers, Melanie
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany.
    Colwell, Steve
    British Antarctic Survey, Cambridge, England.
    Cooper, Owen R.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA;NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Copland, L.
    Univ Ottawa, Dept Geography, Ottawa, ON, Canada.
    Cross, J. N.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA.
    Crouch, Jake
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Cutie, Virgen
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Davis, Sean M.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    de Eyto, Elvira
    Marine Inst, Newport, Ireland.
    de Jeu, Richard A. M.
    VanderSat BV, Haarlem, Netherlands.
    de Laat, Jos
    Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
    DeGasperi, Curtis L.
    King Cty Water & Land Resources Div, Seattle, WA USA.
    Degenstein, Doug
    Univ Saskatchewan, Saskatoon, SK, Canada.
    Demircan, M.
    Turkish State Meteorol Serv, Ankara, Turkey.
    Derksen, C.
    Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada.
    Di Girolamo, Larry
    Univ Illinois, Urbana, IL USA.
    Diamond, Howard J.
    NOAA OAR Air Resources Lab, Silver Spring, MD USA.
    Dindyal, S.
    Mauritius Meteorological Serv, Vacoas, Mauritius.
    Dlugokencky, Ed J.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Dohan, Kathleen
    Earth & Space Res, Seattle, WA USA.
    Dokulil, Martin T.
    Univ Innsbruck, Res Inst Limnology, Mondsee, Austria.
    Dolman, A. Johannes
    Vrije Univ Amsterdam, Dept Earth Sci Earth & Climate Cluster, Amsterdam, Netherlands.
    Domingues, Catia M.
    Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia;Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
    Donat, Markus G.
    Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia.
    Dong, Shenfu
    Cooperat Inst Marine & Atmospher Sci, Miami, FL USA.
    Dorigo, Wouter A.
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Drozdov, D. S.
    Earth Cryosphere Inst, Tumen, Russia;Tyumen State Oil & Gas Univ, Tyumen, Russia.
    Dunn, Robert J. H.
    Duran-Quesada, Ana M.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Dutton, Geoff S.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    ElKharrim, M.
    Direction Meteorol Natl Maroc, Rabat, Morocco.
    Elkins, James W.
    Epstein, H. E.
    Univ Virginia, Dept Environm Sci, Charlottesville, VIRGINIA.
    Espinoza, Jhan C.
    Inst Geofisico Peru, Lima, Peru.
    Etienne-LeBlanc, Sheryl
    Meteorol Dept St Maarten, St Maarten, Netherlands.
    Famiglietti, James S.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Farrell, S.
    Univ Maryland, Earth Syst Sci Interdiscipl Ctr, College Pk, MD USA.
    Fateh, S.
    Islamic Republic Iranian Meteorol, Tehran, Iran.
    Fausto, R. S.
    Geolog Survey Denmark & Greenland, Copenhagen, Denmark.
    Feely, Richard A.
    Feng, Z.
    FCSD ASGC Pacific Northwest Natl Lab, Richland, WA USA.
    Fenimore, Chris
    Fettweis, X.
    Univ Liege, Liege, Belgium.
    Fioletov, Vitali E.
    Flannigan, Mike
    Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada.
    Flemming, Johannes
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Fogt, Ryan L.
    Ohio Univ, Dept Geography, Athens, Ohio.
    Folland, Chris
    Met Off Hadley Ctr, Exeter, Devon, England;Univ Southern Queensland, Int Ctr Appl Climate Sci, Toowoomba, Queensland, Australia;Univ East Anglia, Sch Environm Sci, Norwich, England.
    Fonseca, C.
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Forbes, B. C.
    Univ Lapland, Arctic Ctr, Rovaniemi, Finland.
    Foster, Michael J.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Francis, S. D.
    Nigerian Meteorol Agcy, Natl Weather Forecast & Climate Res Ctr, Abuja, Nigeria.
    Franz, Bryan A.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Frey, Richard A.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Frith, Stacey M.
    Sci Syst & Appl Inc, Greenbelt, MD USA;NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Froidevaux, Lucien
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Ganter, Catherine
    Bur Meteorol, Melbourne, Vic, Australia.
    Gerland, S.
    Norwegian Polar Res Inst, Fram Ctr, Tromso, Norway.
    Gilson, John
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Gobron, Nadine
    European Commiss, Joint Res Ctr, Ispra, Italy.
    Goldenberg, Stanley B.
    Goni, Gustavo
    Gonzalez, Idelmis T.
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Goto, A.
    Japan Meteorol Agcy, Tokyo, Japan.
    Greenhough, Marianna D.
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Grooss, J. -U
    Gruber, Alexander
    Guard, Charles
    NOAA NWS Weather Forecast Off, Mangilao, GU USA.
    Gupta, S. K.
    Sci Syst & Applicat Inc, Hampton, VA USA.
    Gutierrez, J. M.
    CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain.
    Haas, C.
    York Univ, Earth & Space Sci & Engn, Toronto, ON, Canada;Alfred Wegener Inst, Bremerhaven, Germany.
    Hagos, S.
    Pacific Northwest Natl Lab, FCSD ASGC Climate Phys Grp, Richland, WA USA.
    Hahn, Sebastian
    Haimberger, Leo
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria.
    Hall, Brad D.
    Halpert, Michael S.
    Hamlington, Benjamin D.
    Old Dominion Univ, Ctr Coastal Phys Oceanography, Norfolk, VA USA.
    Hanna, E.
    Univ Sheffield, Dept Geography, Sheffield, S Yorkshire, England.
    Hanssen-Bauer, I
    Norwegian Meteorol Inst, Blindern, Oslo, Norway.
    Hare, Jon
    NOAA NMFS Northeast Fisheries Sci Ctr, Woods Hole, MA USA.
    Harris, Ian
    Univ East Anglia, Natl Ctr Atmospheric Sci, Norwich, NY USA;Univ East Anglia, Climatic Res Unit, Sch Environm Sci, Norwich, NY USA.
    Heidinger, Andrew K.
    NOAA NESDIS STAR Univ Wisconsin Madison, Madison, WI USA.
    Heim, Richard R., Jr.
    NOAA NESDIS Natl Ctr, Asheville, NC USA.
    Hendricks, S.
    Alfred Wegener Inst, Bremerhaven, Germany.
    Hernandez, Marieta
    Climate Ctr, Inst Meteorol, Havana, Cuba.
    Hernandez, Rafael
    Inst Nacl Meteorol & Hidrolog Venezuela, Caracas, Venezuela.
    Hidalgo, Hugo G.
    Ho, Shu-peng
    Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA.
    Hobbs, William R.
    Univ Tasmania, Antarctic Climate & Ecosystems, Hobart, Australia.
    Huang, Boyin
    Huelsing, Hannah K.
    SUNY Albany, Albany, NY USA.
    Hurst, Dale F.
    Ialongo, I.
    Finnish Meteorolog Inst, Helsinki, Finland.
    Ijampy, J. A.
    Nigerian Meteorol Agcy, Abuja, Nigeria.
    Inness, Antje
    European Ctr Medium Range, Reading, Berks, England.
    Isaksen, K.
    Norwegian Meteorolog Inst, Oslo, Norway.
    Ishii, Masayoshi
    Japan Meteorolog Agcy, Climat Res Dept, Meteorolog Res Inst, Tsukuba, Ibaraki, Japan.
    Jevrejeva, Svetlana
    Jimenez, C.
    Estellus, Paris, France;PSL Res Univ, LERMA, Observatoire Paris, Paris, France.
    Xiangze, Jin
    John, Viju
    Met Off Hadley Ctr, Exeter, Devon, England;EUMETSAT, Darmstadt, Germany.
    Johns, William E.
    Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
    Johnsen, B.
    Norwegian Radiat Protect Authority, Osteras, Norway.
    Johnson, Bryan
    NOAA OAR Earth System Res Lab, Global Monitoring Div, Boulder, CO USA;Univ Colorado Boulder, Boulder, CO USA.
    Johnson, Gregory C.
    Johnson, Kenneth S.
    Monterey Bay Aquarium Res Inst, Moss Landing, CA USA.
    Jones, Philip D.
    Univ East Anglia, Climat Res Unit, Sch Environm Sci, Norwich, England.
    Jumaux, Guillaume
    Meteo France, Direct Interreg Ocean Indien, St Denis, Reunion, France.
    Kabidi, Khadija
    Direct Meteorolog Natl Maroc, Rabat, Morocco.
    Kaiser, J. W.
    Max Planck Inst Chem, Mainz, Germany.
    Kass, David
    California Inst Technol, Jet Propulsion Lab, Pasadena, CA USA.
    Kato, Seiji
    Kazemi, A.
    Islamic Republic Iran Meteorolog Org, Tehran, Iran.
    Kelem, G.
    Ethiopian Meteorolog Agcy, Addis Ababa, Ethiopia.
    Keller, Linda M.
    Univ Wisconsin Madison, Dept Atmospheric & Oceanic Sci, Madison, WI USA.
    Kelly, B. P.
    Ctr Blue Economy, Middlebury Inst Int Studies, Monterey, CA USA;Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA;Study Environm Arctic Change SEARCH, Fairbanks, AK USA.
    Kendon, Mike
    Met Off Hadley Ctr, Exeter, Devon, England.
    Kennedy, John
    Kerr, Kenneth
    Trinidad & Tobago Meteorol Serv, Piarco, Trinid & Tobago.
    Kholodov, A. L.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Khoshkam, Mahbobeh
    Islamic Republ Iran Meteorol Org, Tehran, Iran.
    Killick, Rachel
    Met Off Hadley Ctr, Exeter, Devon, England.
    Kim, Hyungjun
    Univ Tokyo, Inst Ind Sci, Tokyo 1138654, Japan.
    Kim, S. -J
    Kimberlain, Todd B.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Klotzbach, Philip J.
    Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA.
    Knaff, John A.
    NOAA NESDIS Ctr Satellite Applicat & Res, Ft Collins, CO USA.
    Kochtubajda, Bob
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Kohler, J.
    Norwegian Polar Res Inst, Tromso, Norway.
    Korhonen, Johanna
    Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland.
    Korshunova, Natalia N.
    World Data Ctr, All Russian Res Inst Hydrometeorol Informat, Obninsk, Russia.
    Kramarova, Natalya
    NASA Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD USA.
    Kratz, D. P.
    NASA Langley Res Ctr, Hampton, VA USA.
    Kruger, Andries
    South African Weather Serv, Pretoria, South Africa.
    Kruk, Michael C.
    NOAA NESDIS Natl Environm Informat, ERT Inc, Asheville, NC USA.
    Krumpen, T.
    Alfred Wegener Inst, Bremerhaven, Germany.
    Lakatos, M.
    Hungarian Meteorol Serv, Climatol Div, Budapest, Hungary.
    Lakkala, K.
    Finnish Meteorol Inst, Arctic Res Ctr, Sodankyla, Finland.
    Lanckmann, J. -P
    Lander, Mark A.
    Univ Guam, Mangilao, GU USA.
    Landschuetzer, Peter
    Max Planck Inst Meteorol, Hamburg, Germany.
    Landsea, Chris W.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Lankhorst, Matthias
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Lantz, Kathleen
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA;NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Lazzara, Matthew A.
    Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA;Madison Area Tech Coll, Dept Phys Sci, Sch Arts & Sci, Madison, WI USA.
    Leuliette, Eric
    NOAA, NWS NCWCP Lab Satellite Altimetry, College Pk, MD USA.
    Lewis, Stephen R.
    Open Univ, Sch Phys Sci, Fac Sci Technol Engn & Math, Milton Keynes, Bucks, England.
    L'Heureux, Michelle
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Lieser, Jan L.
    Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
    Lin, I-I
    Natl Taiwan Univ, Taipei, Taiwan.
    Liu, Hongxing
    Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA.
    Liu, Yinghui
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Locarnini, Ricardo
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Loeb, Norman G.
    NASA Langley Res Ctr, Hampton, VA USA.
    Long, Craig S.
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA.
    Loranty, M.
    Colgate Univ, Dept Geog, Hamilton, NY USA.
    Lorrey, Andrew M.
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Loyola, Diego
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany.
    Lu, Mong-Ming
    Natl Taiwan Univ, Taipei, Taiwan;Cent Weather Bur, Taipei, Taiwan.
    Lumpkin, Rick
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Luo, Jing-Jia
    Australian Bur Meteorol, Melbourne, Vic, Australia.
    Luojus, K.
    Finnish Meteorolog Inst, Helsinki, Finland.
    Lyman, John M.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA;Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Macara, Gregor
    Natl Inst Water & Atmospher Res, Wellington, New Zealand.
    Macdonald, Alison M.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Macias-Fauria, M.
    Univ Oxford, Sch Geog & Environm, Oxford, England.
    Malkova, G. V.
    Earth Cryosphere Inst, Tumen, Russia;Tyumen State Oil & Gas Univ, Tyumen, Russia.
    Manney, G.
    New Mexico Inst Mining & Technol, Socorro, NM USA;NorthWest Res Ass, Socorro, NM USA.
    Marchenko, S. S.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Marengo, Jose A.
    Ctr Nacl Monitoramento Alertas Desastres Nat, Cachoeira Paulista, SP, Brazil.
    Marra, John J.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Marszelewski, Wlodzimierz
    Nicolaus Copernicus Univ, Dept Hydrol & Water Management, Torun, Poland.
    Martens, B.
    Univ Ghent, Lab Hydrol & Water Management, Ghent, Belgium.
    Martinez-Gueingla, Rodney
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Massom, Robert A.
    Univ Tasmania, Antarctic Climate & Ecosystems Cooperat Res Ctr, Hobart, Tas, Australia;Univ Tasmania, Australian Antarctic Div, Hobart, Tas, Australia.
    Mathis, Jeremy T.
    NOAA, OAR Arctic Res Program, Silver Spring, MD USA.
    May, Linda
    Ctr Ecol & Hydrol, Edinburgh, Midlothian, Scotland.
    Mayer, Michael
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria.
    Mazloff, Matthew
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    McBride, Charlotte
    South African Weather Serv, Pretoria, South Africa.
    McCabe, M. F.
    King Abdullah Univ Sci & Technol, Div Biol & Environm Sci & Engn, Water Desalinat & Reuse Ctr, Thuwal, Saudi Arabia.
    McCarthy, Gerard
    Natl Oceanog Ctr, Southampton, Hants, England.
    McCarthy, M.
    Met Off Hadley Ctr, Exeter, Devon, England.
    McDonagh, Elaine L.
    McGree, Simon
    Bur Meteorol, Melbourne, Vic, Australia.
    McVicar, Tim R.
    CSIRO Land & Water Flagship, Canberra, ACT, Australia;Australian Res Council, Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia;Australian Capital Territory, Sydney, NSW, Australia.
    Mears, Carl A.
    Remote Sensing Syst, Santa Rosa, CA USA.
    Meier, W.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Mekonnen, A.
    North Carolina A&T State Univ, Dept Energy & Environm Syst, Greensboro, NC USA.
    Menezes, V. V.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Mengistu Tsidu, G.
    Botswana Int Univ Sci & Technol, Dept Earth & Environm Sci, Palapye, Botswana;Addis Ababa Univ, Dept Phys, Addis Ababa, Ethiopia. Univ Reading, Natl Ctr Earth Observat, Reading RG6 2AH, Berks, England.
    Menzel, W. Paul
    Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA.
    Merchant, Christopher J.
    Meredith, Michael P.
    British Antarctic Survey, Cambridge, England.
    Merrifield, Mark A.
    Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Minnis, Patrick
    NASA Langley Res Ctr, Hampton, VA USA.
    Miralles, Diego G.
    Univ Ghent, Lab Hydrol & Water Management, Ghent, Belgium.
    Mistelbauer, T.
    Earth Observing Data Ctr GmbH, Vienna, Austria.
    Mitchum, Gary T.
    Univ S Florida, Coll Marine Sci, St Petersburg, FL USA.
    Mitro, Srkani
    Meteorol Serv Suriname, Paramaribo, Surinam.
    Monselesan, Didier
    CSIRO Oceans & Atmos, Hobart, Tas, Australia.
    Montzka, Stephen A.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Mora, Natalie
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Morice, Colin
    Met Off Hadley Ctr, Exeter, Devon, England.
    Morrow, Blair
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Mote, T.
    Univ Georgia, Dept Geog, Athens, GA 30602 USA.
    Mudryk, L.
    Environm & Climate Change Canada, Climate Res Div, Montreal, PQ, Canada.
    Muehle, Jens
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Mullan, A. Brett
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Mueller, R.
    Forschungszentrum Julich, Julich, Germany.
    Nash, Eric R.
    NASA Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD USA.
    Nerem, R. Steven
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    Newman, Louise
    Univ Tasmania, Inst Marine & Antarctic Studies, SOOS Int Project Off, Hobart, Tas 7001, Australia.
    Newman, Paul A.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Nieto, Juan Jose
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Noetzli, Jeannette
    WSL Inst Snow & Avalanche Res, Davos, Switzerland.
    O'Neel, S.
    USGS, Alaska Sci Ctr, Anchorage, AK USA.
    Osborn, Tim J.
    Univ East Anglia, Climatic Res Unit, Sch Environm Sci, Norwich, NY USA.
    Overland, J.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA.
    Oyunjargal, Lamjav
    Natl Agcy Meteorol, Inst Meteorol & Hydrol, Hydrol & Environ Monitoring, Ulaanbaatar, Mongol Peo Rep.
    Parinussa, Robert M.
    VanderSat BV, Haarlem, Netherlands.
    Park, E-hyung
    Korea Meteorol Adm, Seoul, South Korea.
    Pasch, Richard J.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Pascual-Ramirez, Reynaldo
    Natl Meteorol Serv Mexico, Mexico City, DF, Mexico.
    Paterson, Andrew M.
    Ontario Ministry Environ & Climate Change, Dorset Environ Sci Ctr, Dorset, ON, Canada.
    Pearce, Petra R.
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Pellichero, V.
    Sorbonne Univ, LOCEAN IPSL, CNRS IRD MNHN, Paris, France.
    Pelto, Mauri S.
    Nichols Coll, Dudley, MA USA.
    Peng, Liang
    Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA.
    Perkins-Kirkpatrick, Sarah E.
    Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia.
    Perovich, D.
    Dartmouth Coll, Thayer Sch Eng, Hanover, NH USA;USACE, ERDC, Cold Reg Res & Engn Lab, Hanover, NH USA.
    Petropavlovskikh, Irina
    NOAA OAR Earth System Res Lab, Global Monitoring Div, Boulder, CO USA;Univ Colorado Boulder, Boulder, CO USA.
    Pezza, Alexandre B.
    Greater Wellington Reg Council, Wellington, New Zealand.
    Phillips, C.
    Univ Wisconsin Madison, Dept Atmospheric & Oceanic Sci, Madison, WI USA.
    Phillips, David
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Phoenix, G.
    Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.
    Pinty, Bernard
    European Commiss, Joint Res Ctr, Ispra, Italy.
    Pitts, Michael C.
    NASA Langley Res Ctr, Hampton, VA USA.
    Pons, M. R.
    Agencia Estatal Meteorol, Santander, Spain.
    Porter, Avalon O.
    Cayman Isl Natl Weather Serv, Grand Cayman, Cayman Islands.
    Quintana, Juan
    Direcc Meteorol Chile, Santiago, Chile.
    Rahimzadeh, Fatemeh
    Atmospher Sci & Meteorol Res Ctr, Tehran, Iran.
    Rajeevan, Madhavan
    Minist Earth Sci, Earth System Sci Org, New Delhi, India.
    Rayner, Darren
    Natl Oceanog Ctr, Southampton, Hants, England.
    Raynolds, M. K.
    Univ Alaska Fairbanks, Inst Arct Biol, Fairbanks, AK 99701 USA.
    Razuvaev, Vyacheslav N.
    All Russian Res Inst Hydrometeorol Informat, Obninsk, Russia.
    Read, Peter
    Univ Oxford, Dept Phys, Oxford OX1 2JD, England.
    Reagan, James
    Univ Maryland, Earth Syst Sci Interdiscipl Ctr, College Pk, MD USA;NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Reid, Phillip
    CAWRC, Hobart, Tas, Australia;Australian Bur Meteorol, Melbourne, Vic, Australia.
    Reimer, Christoph
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria;EODC, Vienna, Austria.
    Remy, Samuel
    CNRS UPMC, Inst Pierre Simon Laplace, Paris, France.
    Renwick, James A.
    Victoria Univ Wellington, Wellington, New Zealand.
    Revadekar, Jayashree V.
    Indian Inst Trop Meteorol, Pune, Maharashtra, India.
    Richter-Menge, J.
    Univ Alaska Fairbanks, Fairbanks, AK USA.
    Rimmer, Alon
    Israel Oceanog & Limnol Res, Yigal Allon Kinneret Limnol Lab, Migdal, Israel.
    Robinson, David A.
    Rutgers State Univ, Dept Geog, Piscataway, NJ 08855 USA.
    Rodell, Matthew
    NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA.
    Rollenbeck, Ruetger
    Univ Marburg, Fac Geog, Lab Climatol Remote Sensing, Marburg, Germany.
    Romanovsky, Vladimir E.
    Tyumen State Univ, Tyumen, Russia;Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Ronchail, Josyane
    Univ Paris Diderot, Lab LOCEAN IPSL, Paris, France.
    Roquet, F.
    Stockholm Univ MISU, Dept Meteorol, Stockholm, Sweden.
    Rosenlof, Karen H.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Roth, Chris
    Univ Saskatchewan, Saskatoon, SK, Canada.
    Rusak, James A.
    Ontario Ministry Environ & Climate Change, Dorset Environ Sci Ctr, Dorset, ON, Canada.
    Sallee, Jean-Bapiste
    Sorbonne Univ, LOCEAN IPSL, CNRS IRD MNHN, Paris, France;British Antarctic Survey, Cambridge, England.
    Sanchez-Lugo, Ahira
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Santee, Michelle L.
    NASA Jet Propuls Lab, Pasadena, CA USA.
    Sarmiento, Jorge L.
    Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ USA.
    Sawaengphokhai, P.
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Sayouri, Amal
    Direct Meteorolog Natl Maroc, Rabat, Morocco.
    Scambos, Ted A.
    Univ Colorado Boulder, Natl Snow & Ice Data Ctr, Boulder, CO USA.
    Schemm, Jae
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Schladow, S. Geoffrey
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA USA.
    Schmid, Claudia
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Schmid, Martin
    Swiss Federal Inst Aquat Sci & Technol, Eawag, Kastanienbaum, Switzerland.
    Schoeneich, P.
    Univ Grenoble Alpes, Inst Geog Alpine, Grenoble, France.
    Schreck, Carl J., III
    N Carolina State Univ, Cooperat Inst Climate & Satellites, Asheville, NC USA.
    Schuur, Ted
    No Arizona Univ, Ctr Ecosystem Sci & Soc, Flagstaff, AZ 86011 USA.
    Selkirk, H. B.
    NASA Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD USA.
    Send, Uwe
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Sensoy, Serhat
    Turkish State Meteorol Serv, Ankara, Turkey.
    Sharp, M.
    Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada.
    Shi, Lei
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Shiklomanov, Nikolai I.
    George Washington Univ, Dept Geog, Washington, DC 20052 USA.
    Shimaraeva, Svetlana V.
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Siegel, David A.
    Univ Calif Santa Barbara, Santa Barbara, CA USA.
    Signorini, Sergio R.
    Sci Applicat Int Corp, Beltsville, MD USA.
    Silov, Eugene
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Sima, Fatou
    Dept Water Resources, Div Meteorol, Banjul, Gambia.
    Simmons, Adrian J.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Smeed, David A.
    Natl Oceanog Ctr, Southampton, Hants, England.
    Smeets, C. J. P. P.
    Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands.
    Smith, Adam
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Smith, Sharon L.
    Nat Resources Canada, Geol Survey Canada, Ottawa, ON, Canada.
    Soden, B.
    Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
    Spence, Jaqueline M.
    Meteorol Serv, Kingston, Jamaica.
    Srivastava, A. K.
    Indian Meteorol Dept, Jaipur, Rajasthan, India.
    Stackhouse, Paul W., Jr.
    NASA Langley Res Ctr, Hampton, VA USA.
    Stammerjohn, Sharon
    Univ Colorado Boulder, Inst Arctic & Alpine Res, Boulder, CO USA.
    Steinbrecht, Wolfgang
    German Weather Serv DWD, Hohenpeissenberg, Germany.
    Stella, Jose L.
    Serv Meteorol Nacl, Buenos Aires, DF, Argentina.
    Stennett-Brown, Roxann
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Stephenson, Tannecia S.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Strahan, Susan
    NASA Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD USA.
    Streletskiy, Dimitri A.
    George Washington Univ, Dept Geog, Washington, DC 20052 USA.
    Sun-Mack, Sunny
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Swart, Sebastiaan
    CSIR Southern Ocean Carbon & Climate Observ, Stellenbosch, South Africa.
    Sweet, William
    NOAA NOS Ctr Operat Oceanog Products & Serv, Silver Spring, MD USA.
    Tamar, Gerard
    Grenada Airports Author, St Georges, Grenada.
    Taylor, Michael A.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Tedesco, M.
    NASA Goddard Inst Space Studies, New York, NY USA;Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
    Thoman, R. L.
    NOAA Natl Weather Serv, Fairbanks, AK USA.
    Thompson, L.
    Simon Fraser Univ, Dept Earth Sci, Burnaby, BC, Canada.
    Thompson, Philip R.
    Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Timmermans, M. -L
    Timofeev, Maxim A.
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Tirnanes, Joaquin A.
    Univ Santiago Compostela, Lab Syst, Technol Res Inst, Santiago De Compostela, Spain.
    Tobin, Skie
    Bur Meteorol, Melbourne, Vic, Australia.
    Trachte, Katja
    Philipps Univ, Lab Climatol & Remote Sensing, Marburg, Germany.
    Trewin, Blair C.
    Australian Bur Meteorol, Melbourne, Vic, Australia.
    Trotman, Adrian R.
    Caribbean Inst Meteorol & Hydrol, Bridgetown, Barbados.
    Tschudi, M.
    Univ Colorado Boulder, Aerospace Engn Sci, Boulder, CO USA.
    Tweedy, Olga
    Johns Hopkins Univ, Baltimore, MD USA.
    van As, D.
    Geol Survey Denmark & Greenland, Copenhagen, Denmark.
    van de Wal, R. S. W.
    Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands.
    van der Schalie, Robin
    VanderSat BV, Haarlem, Netherlands.
    van der Schrier, Gerard
    Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
    van der Werf, Guido R.
    Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands.
    van Meerbeeck, Cedric J.
    Caribbean Inst Meteorol & Hydrol, Bridgetown, Barbados.
    Velicogna, I.
    Univ Calif Irvine, Irvine, CA 92717 USA.
    Verburg, Piet
    Natl Inst Water & Atmospher Res, Wellington, New Zealand.
    Vieira, G.
    Univ Lisbon, Inst Geog & Ordenamento Territorio, P-1699 Lisbon, Portugal.
    Vincent, Lucie A.
    Environm & Climate Change Canada, Toronto, ON, Canada.
    Voemel, Holger
    Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO USA.
    Vose, Russell S.
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Wagner, Wolfgang
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Wahlin, Anna
    Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden.
    Walker, D. A.
    Univ Alaska Fairbanks, Inst Arct Biol, Fairbanks, AK 99701 USA.
    Walsh, J.
    Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA.
    Wang, Bin
    Univ Hawaii, SOEST, Dept Meteorol, Honolulu, HI USA;IPRC, Honolulu, HI USA.
    Wang, Chunzai
    South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou, Peoples R China.
    Wang, Junhong
    SUNY Albany, Albany, NY USA.
    Wang, Lei
    Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA USA.
    Wang, M.
    Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA USA.
    Wang, Sheng-Hung
    Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH USA.
    Wanninkhof, Rik
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Watanabe, Shohei
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA USA.
    Weber, Mark
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology. Univ Bremen, Bremen, Germany..
    Weller, Robert A.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Weyhenmeyer, Gesa A.
    Whitewood, Robert
    Environm & Climate Change Canada, Toronto, ON, Canada.
    Wiese, David N.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Wijffels, Susan E.
    CSIRO Oceans & Atmos, Hobart, Tas, Australia.
    Wilber, Anne C.
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Wild, Jeanette D.
    NOAA Climate Predict Ctr, INNOVIM, College Pk, MD USA.
    Willett, Kate M.
    Met Off Hadley Ctr, Exeter, Devon, England.
    Willie, Shem
    St Lucia Meteorol Serv, St Lucia, Qld, Australia.
    Willis, Josh K.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Wolken, G.
    Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA.
    Wong, Takmeng
    NASA Langley Res Ctr, Hampton, VA USA.
    Wood, E. F.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08536 USA.
    Woolway, R. Iestyn
    Univ Reading, Dept Meteorol, Reading RG6 2AH, Berks, England.
    Wouters, B.
    Univ Bristol, Sch Geog Sci, Bristol BS8 1TH, Avon, England.
    Xue, Yan
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA.
    Yim, So-Young
    Korea Meteorol Adm, Seoul, South Korea.
    Yin, Xungang
    NOAA NESDIS Natl Environm Informat, ERT Inc, Asheville, NC USA.
    Yu, Lisan
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Zambrano, Eduardo
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Zhang, Huai-Min
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Zhang, Peiqun
    Beijing Climate Ctr, Beijing, Peoples R China.
    Zhao, Guanguo
    Univ Illinois, Urbana, IL USA.
    Zhao, Lin
    Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Peoples R China.
    Ziemke, Jerry R.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA;Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD USA.
    Zilberman, Nathalie
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    State of the Climate in 20162017In: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 98, no 8, p. S1-S280Article in journal (Refereed)
    Abstract [en]

    In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.

  • 186. Arnegard, Matthew E.
    et al.
    McGee, Matthew D.
    Matthews, Blake
    Marchinko, Kerry B.
    Conte, Gina L.
    Kabir, Sahriar
    Bedford, Nicole
    Bergek, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Chan, Yingguang Frank
    Jones, Felicity C.
    Kingsley, David M.
    Peichel, Catherine L.
    Schluter, Dolph
    Genetics of ecological divergence during speciation2014In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 511, no 7509, p. 307-311Article in journal (Refereed)
    Abstract [en]

    Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Although this process is a major generator of biodiversity, its genetic basis is still poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces the growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but depend on the ecological context.

  • 187. Arnold, M. C.
    et al.
    Bier, R. L.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Lindberg, T. T.
    Bernhardt, E. S.
    Di Giulio, R. T.
    Biofilm mediated uptake of selenium in streams with mountaintop coal mine drainage2017In: Limnologica, ISSN 0075-9511, E-ISSN 1873-5851, Vol. 65, p. 10-13Article in journal (Refereed)
    Abstract [en]

    Selenium (Se) may cause reproductive toxicity, yet the characteristics of Se bioaccumulation in aquatic food webs are understudied. Stream biofilms were grown in two reaches of Mud River, West Virginia (WV), including one downstream of a coal mine complex and an adjacent, unmined watershed. Mined stream biofilms contained significantly higher Se concentrations compared to unmined biofilms. An inverse relationship between water Se concentrations and biofilm accumulation factors was observed; mined-stream biofilms had an average bioconcentration factor (BCF) of 688 ± 350 fold while unmined-stream biofilms had an average BCF of 14505 ± 2700 fold.

  • 188. Arnott, Shelley E.
    et al.
    Fugère, Vincent
    Symons, Celia C.
    Melles, Stephanie J.
    Beisner, Beatrix E.
    Cañedo-Argüelles, Miguel
    Hébert, Marie-Pier
    Brentrup, Jennifer A.
    Downing, Amy L.
    Gray, Derek K.
    Greco, Danielle
    Hintz, William D.
    McClymont, Alexandra
    Relyea, Rick A.
    Rusak, James A.
    Searle, Catherine L.
    Astorg, Louis
    Baker, Henry K.
    Ersoy, Zeynep
    Espinosa, Carmen
    Franceschini, Jaclyn M.
    Giorgio, Angelina T.
    Göbeler, Norman
    Hassal, Emily
    Huynh, Mercedes
    Hylander, Samuel
    Jonasen, Kacie L.
    Kirkwood, Andrea
    Langenheder, Silke
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Langvall, Ola
    Laudon, Hjalmar
    Lind, Lovisa
    Lundgren, Maria
    Moffett, Emma R.
    Proia, Lorenzo
    Schuler, Matthew S.
    Shurin, Jonathan B.
    Steiner, Christopher F.
    Striebel, Maren
    Thibodeau, Simon
    Urrutia Cordero, Pablo
    Vendrell-Puigmitja, Lidia
    Weyhenmeyer, Gesa A.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
    Derry, Alison M.
    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance2023In: Limnology and Oceanography Letters, E-ISSN 2378-2242, Vol. 8, no 1, p. 8-18Article in journal (Refereed)
    Abstract [en]

    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl−) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl− tolerance is present among populations? (2) What factors predict intraspecific variation in Cl− tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl− tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC50s from published laboratory studies. We found high variation in LC50s for Cl− tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl− tolerance.

    Download full text (pdf)
    fulltext
  • 189.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal Ecology.
    Assortative mating by fitness and sexually antagonistic genetic variation2011In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 65, no 7, p. 2111-2116Article in journal (Refereed)
    Abstract [en]

    Recent documentations of sexually antagonistic genetic variation in fitness have spurred an interest in the mechanisms that may act to maintain such variation in natural populations. Using individual-based simulations, I show that positive assortative mating by fitness increases the amount of sexually antagonistic genetic variance in fitness, primarily by elevating the equilibrium frequency of heterozygotes, over most of the range of sex-specific selection and dominance. Further, although the effects of assortative mating by fitness on the protection conditions of polymorphism in sexually antagonistic loci were relatively minor, it widens the protection conditions under most reasonable scenarios (e. g., under heterozygote superiority when fitness is averaged across the sexes) but can also somewhat narrow the protection conditions under other circumstances. The near-ubiquity of assortative mating in nature suggests that it may contribute to upholding standing sexually antagonistic genetic variation in fitness.

  • 190.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Comment on "Bateman in Nature: Predation on Offspring Reduces the Potential for Sexual Selection"2013In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 340, no 6132, p. 549-Article in journal (Other academic)
  • 191.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Comparative evidence for the evolution of genitalia by sexual selection1998In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 393, no 6687, p. 784-786Article in journal (Refereed)
  • 192.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Cryptic female choice2014In: The Evolution of Insect Mating Systems / [ed] D. Shuker and L. Simmons, Oxford: Oxford University Press, 2014, p. 204-220Chapter in book (Other academic)
  • 193.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Editorial rejects?: Novelty, schnovelty!2013In: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 28, no 8, p. 448-449Article in journal (Other academic)
    Abstract [en]

    Because many journals are currently increasing the rate of pre-peer-review editorial rejects, the editorial criteria upon which such decisions are based are very important. Here, I spotlight 'novelty' as a criterion and argue that it is a very problematic decisive factor at this stage of the editorial process.

  • 194.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Mixed Models Offer No Freedom from Degress Of Freedom2020In: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 35, no 4, p. 329-335Article, review/survey (Refereed)
    Abstract [en]

    Statistics matter greatly in biology, whether we like it or not. As a discipline with an empirical inclination, we are faced with data every day and we rely on inferential statistical models to make sense of it and to provide us with novel insights. Much of the time, the growing level of complexity and sophistication of the models we put to use in ecology and evolution have led to more appropriate analyses of our data. However, this is not always the case. Here, I draw attention to a classic flaw in inferential statistics that has resurfaced in a new flavor as a result of increased reliance on complex linear mixed models -the multifaceted and disturbingly persistent problem of pseudoreplication.

  • 195.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    MULTIPLE MATING IN A WATER STRIDER - MUTUAL BENEFITS OR INTERSEXUAL CONFLICT1989In: Animal Behaviour, ISSN 0003-3472, E-ISSN 1095-8282, Vol. 38, p. 749-756Article in journal (Refereed)
  • 196.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Sensory exploitation and sexual conflict2006In: Philosophical Transactions of the Royal Society of London. Biological Sciences, ISSN 0962-8436, E-ISSN 1471-2970, Vol. 361, no 1466, p. 375-386Article in journal (Refereed)
  • 197.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Sex wars: Genes, bacteria, and biased sex ratios2003In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 424, no 6949, p. 616-617Article in journal (Refereed)
  • 198.
    Arnqvist, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Sexual conflict and sexual selection: Lost in the chase2004In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 58, no 6, p. 1383-1388Article in journal (Refereed)
  • 199.
    Arnqvist, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Andres, Jose A.
    The effects of experimentally induced polyandry on female reproduction in a monandrous mating system2006In: Ethology, ISSN 0179-1613, E-ISSN 1439-0310, Vol. 112, no 8, p. 748-756Article in journal (Refereed)
  • 200.
    Arnqvist, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Danielsson, I
    Copulatory behavior, genital morphology, and male fertilization success in water striders1999In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 53, no 1, p. 147-156Article in journal (Refereed)
1234567 151 - 200 of 4208
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf