Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
123456 1 - 50 of 275
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ainla, Alar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Structural Chemistry.
    Nafion (R)-polybenzimidazole (PBI) composite membranes for DMFC applications2007In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 178, no 7-10, p. 581-585Article in journal (Refereed)
    Abstract [en]

    Nafion®–PBI composites were prepared by diffusing synthesized PBI from solution phase into Nafion® membranes, using different concentrations and drying temperatures. In some cases, Nafion® was treated with diethyl amine to screen the –SO3H groups and thereby avoid the strong acid–base interactions between the polymers during diffusion. The presence of PBI in the membranes was characterized with FT–IR spectroscopy. The performance of the membranes was studied by in-plane conductivity and methanol permeability. The performance ratio (the ratio between conductivity and methanol permeability compared to Nafion®) increased by up to 50% for the composite membranes compared to Nafion®.

  • 2.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brant, William
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Marzano, Fernanda
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen AG.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO)—In Situ Neutron Diffraction and Performance in Li-Ion Full Cells2018Conference paper (Refereed)
    Abstract [en]

    LiNi0.5Mn1.5O4 (LNMO) is a promising spinel-type positive electrode for lithium ion batteries as it operates at high voltage and possesses high power capability. However, rapid performance degradation in full cells, especially at elevated temperatures, is a problem. There has been a considerable interest in its crystal structure as this is known to affect its electrochemical performance. LNMO can adopt a P4332 (cation ordered) or Fd-3m (cation disordered) arrangement depending on the synthesis conditions. Most of the studies in literature agree on better electrochemical performance for disordered LNMO [1], however, a clear understanding of the reason for this behaviour is still lacking. This partly arises from the fact that synthesis conditions leading to disordering also lead to oxygen deficiency, rock-salt impurities and therefore generate some Mn3+ [2]. Most commonly, X-ray diffraction is used to characterize these materials, however, accurate structural analysis is difficult due to the near identical scattering lengths of Mn and Ni. This is not the case for neutron diffraction. In this study, an in-situ neutron diffraction heating-cooling experiment was conducted on slightly Mn-rich LNMO under pure oxygen atmosphere in order to investigate relationship between disordering and oxygen deficiency. The study shows for the first time that there is no direct relationship between oxygen loss and cation disordering, as disordering starts prior to oxygen release. Our findings suggest that it is possible to obtain samples with varying degrees of ordering, yet with the same oxygen content and free from impurities. In the second part of the study, highly ordered, partially ordered and fully disordered samples have been tested in LNMO∥LTO (Li4Ti5O12) full cells at 55 °C. It is shown that differences in their performances arise only after repeated cycling, while all the samples behave similarly at the beginning of the test. The difference is believed to be related to instabilities of LNMO at higher voltages, that is, in its lower lithiation states.

    [1] A. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 7 (2014) 1339.

    [2] M. Kunduraci, G.G. Amatucci, J. Power Sources. 165 (2007) 359–367.

  • 3.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Concentrated LiFSI-€“Ethylene Carbonate Electrolytes and Their Compatibility with High-Capacity and High-Voltage Electrodes2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 1, p. 585-595Article in journal (Refereed)
    Abstract [en]

    The unusual physical and chemical properties of electrolytes with excessive salt contents have resulted in rising interest in highly concentrated electrolytes, especially for their application in batteries. Here, we report strikingly good electrochemical performance in terms of conductivity and stability for a binary electrolyte system, consisting of lithium bis(fluorosulfonyl)imide (LiFSI) salt and ethylene carbonate (EC) solvent. The electrolyte is explored for different cell configurations spanning both high-capacity and high-voltage electrodes, which are well known for incompatibilities with conventional electrolyte systems: Li metal, Si/graphite composites, LiNi0.33Mn0.33Co0.33O2 (NMC111), and LiNi0.5Mn1.5O4 (LNMO). As compared to a LiTFSI counterpart as well as a common LP40 electrolyte, it is seen that the LiFSI:EC electrolyte system is superior in Li-metal–Si/graphite cells. Moreover, in the absence of Li metal, it is possible to use highly concentrated electrolytes (e.g., 1:2 salt:solvent molar ratio), and a considerable improvement on the electrochemical performance of NMC111-Si/graphite cells was achieved with the LiFSI:EC 1:2 electrolyte both at the room temperature and elevated temperature (55 °C). Surface characterization with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of thicker surface film formation with the LiFSI-based electrolyte as compared to the reference electrolyte (LP40) for both positive and negative electrodes, indicating better passivation ability of such surface films during extended cycling. Despite displaying good stability with the NMC111 positive electrode, the LiFSI-based electrolyte showed less compatibility with the high-voltage spinel LNMO electrode (4.7 V vs Li+/Li).

    Download full text (pdf)
    fulltext
  • 4.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB, SE-15187 Sodertalje, Sweden.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Capacity Loss in LiNi0.5Mn1.5O4-Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures2018In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, no 21, p. 11234-11248Article in journal (Refereed)
    Abstract [en]

    The high-voltage spinel LiNi0.5Mn1.5O4, (LNMO) is an attractive positive electrode because of its operating voltage around 4.7 V (vs Li/Li+) and high power capability. However, problems including electrolyte decomposition at high voltage and transition metal dissolution, especially at elevated temperatures, have limited its potential use in practical full cells. In this paper, a fundamental study for LNMO parallel to Li4Ti5O12 (LTO) full cells has been performed to understand the effect of different capacity fading mechanisms contributing to overall cell failure. Electrochemical characterization of cells in different configurations (regular full cells, back-to-back pseudo-full cells, and 3-electrode full cells) combined with an intermittent current interruption technique have been performed. Capacity fade in the full cell configuration was mainly due to progressively limited lithiation of electrodes caused by a more severe degree of parasitic reactions at the LTO electrode, while the contributions from active mass loss from LNMO or increases in internal cell resistance were minor. A comparison of cell formats constructed with and without the possibility of cross-talk indicates that the parasitic reactions on LTO occur because of the transfer of reaction products from the LNMO side. The efficiency of LTO is more sensitive to temperature, causing a dramatic increase in the fading rate at 55 degrees C. These observations show how important the electrode interactions (cross-talk) can be for the overall cell behavior. Additionally, internal resistance measurements showed that the positive electrode was mainly responsible for the increase of resistance over cycling, especially at 55 degrees C. Surface characterization showed that LNMO surface layers were relatively thin when compared with the solid electrolyte interphase (SEI) on LTO. The SEI on LTO does not contribute significantly to overall internal resistance even though these films are relatively thick. X-ray absorption near-edge spectroscopy measurements showed that the Mn and Ni observed on the anode were not in the metallic state; the presence of elemental metals in the SEI is therefore not implicated in the observed fading mechanism through a simple reduction process of migrated metal cations.

  • 5.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Rapid Capacity Fading of LNMO-LTO Lithium-ion Cells at Elevated Temperature2017Conference paper (Other academic)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O4 (LNMO) has an average operating potential around 4.7 V vs. Li/Li+ and a gravimetric charge capacity of 146 mAh/g making it a promising high energy density positive electrode for Li-ion batteries. Additionally, the 3-D lithium transport paths available in the spinel structure enables fast diffusion kinetics, making it suitable for power applications [1]. However, the material displays large instability during cycling, especially at elevated temperatures. Therefore, significant research efforts have been undertaken to better understand and improve this electrode material.

    Electrolyte (LiPF6 in organic solvents) oxidation and transition metal dissolution are often considered as the main problems [2] for the systems based on this cathode material. These can cause a variety of problems (in different parts of the cell) eventually increasing internal cell resistance, causing active mass loss and decreasing the amount of cyclable lithium.

    Among these issues, cyclable lithium loss cannot be observed in half cells since lithium metal will provide almost unlimited capacity. Being a promising full cell chemistry for high power applications, there has also been a considerable interest on LNMO full cells with Li4Ti5O12 (LTO) used as the negative electrode. For this chemistry, for an optimized cell, quite stable cycling for >1000 cycles has been reported at room temperature while fast fading is still present at 55 °C [3]. This difference in performance (RT vs. 55 °C) is beyond most expectations and likely does not follow any Arrhenius-type of trend.

    In this study, a comprehensive analysis of LNMO-LTO cells has been performed at different temperatures (RT, 40 °C and 55 °C) to understand the underlying reasons behind stable cycling at room temperature and rapid fading at 55 °C. For this purpose, testing was made on regular cells (Figure 1a), 3-electrode cells (Figure 1b) and back-to-back cells [4] (Figure 1c). Electrode interactions (cross-talk) have been shown to exist in the LTO-LNMO system [5] and back-to-back cells have therefore been used to observe fading under conditions where cross-talk is impossible [4]. Galvanostatic cycling combined with short-duration intermittent current interruptions [6] was performed in order to separately observe changes in internal resistance for LNMO and LTO electrodes in a full cell. Ex-situ characterization of electrodes have also been performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES).

    Our findings show how important the electrode interactions can be in full cells, as a decrease in lithium inventory was shown to be the major factor for the observed capacity fading at elevated temperature. In this presentation, the effect of other factors – active mass loss and internal cell resistance – will be discussed together with the consequences of cross-talk.

    References

    [1] A. Kraytsberg et al. Adv. Energy Mater., vol. 2, pp. 922–939,2012.

    [2] J. H. Kim et al., ChemPhysChem, vol. 15, pp. 1940–1954, 2014.

    [3] H. M. Wu et al. J. E. Soc., vol. 156, pp. A1047–A1050, 2009.

    [4] S. R. Li et al., J. E. Soc., vol. 160, no. 9, pp. A1524–A1528, 2013.

    [5] Dedryvère et al. J. Phys. C., vol. 114 (24), pp. 10999–11008, 2010.

    [6] M. J. Lacey, ChemElectroChem, pp. 1–9, 2017.

  • 6.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen AG.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Capacity Loss in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures2017Conference paper (Refereed)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O(LNMO) is an attractive positive electrode due to its operating voltage around 4.7 V (vs. Li/Li+) arising from the Ni2+/Ni4+ redox couple. In addition to high voltage operation, a second advantage of this material is its capability for fast lithium diffusion kinetics through 3-D transport paths in the spinel structure. However, the electrode material is prone to side reactions with conventional electrolytes, including electrolyte decomposition and transition metal dissolution, especially at elevated temperatures1. It is important to understand how undesired reactions originating from the high voltage spinel affect the aging of different cell components and overall cycle life. Half-cells are usually considered as an ideal cell configuration in order to get information only from the electrode of interest. However, this cell configuration may not be ideal to understand capacity fading for long-term cycling and the assumption of ‘stable’ lithium negative electrode may not be valid, especially at high current rates2. Also, among the variety of capacity fading mechanisms, the loss of “cyclable” lithium from the positive electrode (or gain of lithium from electrolyte into the negative electrode) due to side reactions in a full-cell can cause significant capacity loss. This capacity loss is not observable in a typical half-cell as a result of an excessive reserve of lithium in the negative electrode.

    In a full-cell, it is desired that the negative electrode does not contribute to side reactions in a significant way if the interest is more on the positive side. Among candidates on the negative side, Li4Ti5O12 (LTO) is known for its stability since its voltage plateau (around 1.5 V vs. Li/Li+) is in the electrochemical stability window of standard electrolytes and it shows a very small volume change during lithiation. These characteristics make the LNMO-LTO system attractive for a variety of applications (e.g. electric vehicles) but also make it a good model system for studying aging in high voltage spinel-based full cells.

    In this study, we aim to understand the fundamental mechanisms resulting in capacity fading for LNMO-LTO full cells both at room temperature and elevated temperature (55°C). It is known that electrode interactions occur in this system due to migration of reaction products from LNMO to the LTO side3, 4. For this purpose, three electrode cells have been cycled galvanostatically with short-duration intermittent current interruptionsin order to observe internal resistance for both LNMO and LTO electrodes in a full cell, separately. Change of voltage curves over cycling has also been observed to get an insight into capacity loss. For comparison purposes, back-to-back cells (a combination of LNMO and LTO cells connected electrically by lithium sides) were also tested similarly. Post-cycling of harvested electrodes in half cells was conducted to determine the degree of capacity loss due to charge slippage compared to other aging factors. Surface characterization of LNMO as well as LTO electrodes after cycling at room temperature and elevated temperature has been done via SEM, XPS, HAXPES and XANES.

    References

    1. A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater., vol. 2, pp. 922–939, 2012.

    2. Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. Solid State Ionics, 148(3), 405-416, 2002.

    3. Li et al., Journal of The Electrochemical Society, 160 (9) A1524-A1528, 2013.

    4. Aktekin et al., Journal of The Electrochemical Society 164.4: A942-A948. 2017.

    5. Lacey, M. J., ChemElectroChem. Accepted Author Manuscript. doi:10.1002/celc.201700129, 2017. 

  • 7.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Massel, Felix
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Ahmadi, Majid
    Delft Univ Technol, Fac Appl Sci, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands..
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany..
    Marzano, Fernanda
    Scania CV AB, SE-15187 Sodertalje, Sweden..
    Duda, Laurent
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Content2020In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 3, no 6, p. 6001-6013Article in journal (Refereed)
    Abstract [en]

    The crystal structure of LiNi0.5O4 (LNMO) can adopt either low-symmetry ordered (Fd (3) over barm) or high-symmetry disordered (P4(3)32) space group depending on the synthesis conditions. A majority of published studies agree on superior electrochemical performance of disordered LNMO, but the underlying reasons for improvement remain unclear due to the fact that different thermal history of the samples affects other material properties such as oxygen content and particle morphology. In this study, ordered and disordered samples were prepared with a new strategy that renders samples with identical properties apart from their cation ordering degree. This was achieved by heat treatment of powders under pure oxygen atmosphere at high temperature with a final annealing step at 710 degrees C for both samples, followed by slow or fast cooling. Electrochemical testing showed that cation disordering improves the stability of material in charged (delithiated) state and mitigates the impedance rise in LNMO parallel to LTO (Li4Ti5O12) and LNMO parallel to Li cells. Through X-ray photoelectron spectroscopy (XPS), thicker surface films were observed on the ordered material, indicating more electrolyte side reactions. The ordered samples also showed significant changes in the Ni 2p XPS spectra, while the generation of ligand (oxygen) holes was observed in the Ni-O environment for both samples using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Moreover, high-resolution transmission electron microscopy (HRTEM) images indicated that the ordered samples show a decrease in ordering near the particle surface after cycling and a tendency toward rock-salt-like phase transformations. These results show that the structural arrangement of Mn/Ni (alone) has an effect on the surface and "nearsurface" properties of LNMO, particularly in delithiated state, which is likely connected to the bulk electronic properties of this electrode material.

    Download full text (pdf)
    FULLTEXT01
  • 8.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Valvo, Mario
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Smith, Ronald I.
    Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Harwell Campus, Didcot OX11 0QX, Oxon, England.
    Sörby, Magnus H.
    Inst Energy Technol, Dept Neutron Mat Characterizat, POB 40, NO-2027 Kjeller, Norway.
    Marzano, Fernanda Lodi
    Scania CV AB, SE-15187 Sodertalje, Sweden.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brant, William
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO): In Situ Neutron Diffraction and Performance in Li Ion Full Cells2019In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 2, no 5, p. 3323-3335Article in journal (Refereed)
    Abstract [en]

    Lithium ion cells utilizing LiNi0.5Mn1.5O4 (LNMO) as the positive electrode are prone to fast capacity fading, especially when operated in full cells and at elevated temperatures. The crystal structure of LNMO can adopt a P4(3)32 (cation-ordered) or Fd (3) over barm (disordered) arrangement, and the fading rate of cells is usually mitigated when samples possess the latter structure. However, synthesis conditions leading to disordering also lead to oxygen deficiencies and rock-salt impurities and as a result generate Mn3+. In this study, in situ neutron diffraction was performed on disordered and slightly Mn-rich LNMO samples to follow cation ordering-disordering transformations during heating and cooling. The study shows for the first time that there is not a direct connection between oxygen release and cation disordering, as cation disordering is observed to start prior to oxygen release when the samples are heated in a pure oxygen atmosphere. This result demonstrates that it is possible to tune disordering in LNMO without inducing oxygen deficiencies or forming the rock-salt impurity phase. In the second part of the study, electrochemical testing of samples with different degrees of ordering and oxygen content has been performed in LNMO vertical bar vertical bar LTO (Li4Ti5O12) full cells. The disordered sample exhibits better performance, as has been reported in other studies; however, we observe that all cells behave similarly during the initial period of cycling even when discharged at a 10 C rate, while differences arise only after a period of cycling. Additionally, the differences in fading rate were observed to be time-dependent rather than dependent on the number of cycles. This performance degradation is believed to be related to instabilities in LNMO at higher voltages, that is, in its lower lithiation states. Therefore, it is suggested that future studies should target the individual effects of ordering and oxygen content. It is also suggested that more emphasis during electrochemical testing should be placed on the stability of samples in their delithiated state.

  • 9.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Zipprich, Wolfgang
    Volkswagen AG, Wolfsburg, Germany..
    Tengstedt, Carl
    Scania CV AB, Södertalje..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The Effect of the Fluoroethylene Carbonate Additive in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells2017In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 4, p. A942-A948Article in journal (Refereed)
    Abstract [en]

    The effect of the electrolyte additive fluoroethylene carbonate (FEC) for Li-ion batteries has been widely discussed in literature in recent years. Here, the additive is studied for the high-voltage cathode LiNi0.5Mn1.5O4 (LNMO) coupled to Li4Ti5O12 (LTO) to specifically study its effect on the cathode side. Electrochemical performance of full cells prepared by using a standard electrolyte (LP40) with different concentrations of FEC (0, 1 and 5 wt%) were compared and the surface of cycled positive electrodes were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that addition of FEC is generally of limited use for this battery system. Addition of 5 wt% FEC results in relatively poor cycling performance, while the cells with 1 wt% FEC showed similar behavior compared to reference cells prepared without FEC. SEM and XPS analysis did not indicate the formation of thick surface layers on the LNMO cathode, however, an increase in layer thickness with increased FEC content in the electrolyte could be observed. XPS analysis on LTO electrodes showed that the electrode interactions between positive and negative electrodes occurred as Mn and Ni were detected on the surface of LTO already after 1 cycle. (C) The Author(s) 2017. Published by ECS. All rights reserved.

    Download full text (pdf)
    fulltext
  • 10.
    Alipour, Mohammad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Tavallaey, Shiva Sander
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden.;Sch Sci KTH, Dept Mech, SE-10044 Stockholm, Sweden..
    Andersson, Anna M.
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Improved Battery Cycle Life Prediction Using a Hybrid Data-Driven Model Incorporating Linear Support Vector Regression and Gaussian2022In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 23, no 7, article id e202100829Article in journal (Refereed)
    Abstract [en]

    The ability to accurately predict lithium-ion battery life-time already at an early stage of battery usage is critical for ensuring safe operation, accelerating technology development, and enabling battery second-life applications. Many models are unable to effectively predict battery life-time at early cycles due to the complex and nonlinear degrading behavior of lithium-ion batteries. In this study, two hybrid data-driven models, incorporating a traditional linear support vector regression (LSVR) and a Gaussian process regression (GPR), were developed to estimate battery life-time at an early stage, before more severe capacity fading, utilizing a data set of 124 battery cells with lifetimes ranging from 150 to 2300 cycles. Two type of hybrid models, here denoted as A and B, were proposed. For each of the models, we achieved 1.1 % (A) and 1.4 % (B) training error, and similarly, 8.3 % (A) and 8.2 % (B) test error. The two key advantages are that the error percentage is kept below 10 % and that very low error values for the training and test sets were observed when utilizing data from only the first 100 cycles.The proposed method thus appears highly promising for predicting battery life during early cycles.

    Download full text (pdf)
    fulltext
  • 11.
    Alipour, Mohammad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Yin, Litao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tavallaey, Shiva Sander
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden.;KTH, Dept Mech, Sch Sci, SE-10044 Stockholm, Sweden..
    Andersson, Anna Mikaela
    ABB AB Corp Res, Forskargrand 7, SE-72178 Västerås, Sweden..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A surrogate-assisted uncertainty quantification and sensitivity analysis on a coupled electrochemical-thermal battery aging model2023In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 579, article id 233273Article in journal (Refereed)
    Abstract [en]

    High-fidelity physics-based models are required to comprehend battery behavior at various operating condi-tions. This paper proposes an uncertainty quantification analysis on a coupled electrochemical-thermal aging model to improve the reliability of a battery model, while also investigating the impact of parametric model uncertainties on battery voltage, temperature, and aging. The coupled model's high computing cost, however, is a significant barrier to perform uncertainty quantification (UQ) and sensitivity analysis (SA). To address this problem, a surrogate model - i.e, by simulating the outcome of a quantity of interest that cannot be easily computed or measured - based on the Gaussian process regression (GPR) theory and principle component analysis (PCA) is built, using a small collection of finite element simulation results as synthetic training data. In total, 43 variable electrochemical-thermal parameters as well as 13 variable aging parameters are studied and estimated. Moreover, the trained surrogate model is also used in the parameterization of the electrochemical and thermal models. The results show that the uncertainties in the input parameters significantly affect the estimations of battery voltage, temperature, and aging. Based on this sensitivity analysis, the most influential parameters affecting the above mentioned battery outputs are reported. This approach is thereby helpful for developing robust and reliable high-fidelity battery aging models with potential applications in digital twins as well as for synthetic data generation.

    Download full text (pdf)
    fulltext
  • 12.
    Andersson, Edvin K. W.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Wu, Liang-Ting
    Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan..
    Bertoli, Luca
    Dipartimento Chim Materiali & Ingn Chim Giulio Nat, Dipartimento Chim Mat & Ingn Chim Giulio Natta, Via Luigi Mancinelli 7, I-20131 Milan, Italy..
    Weng, Yi-Chen
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Friesen, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Elbouazzaoui, Kenza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bloch, Sophia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Ovsyannikov, Ruslan
    Helmholtz Zentrum Berlin Mat & Energie, Inst Methods & Instrumentat Synchrotron Radiat Res, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Giangrisostomi, Erika
    Helmholtz Zentrum Berlin Mat & Energie, Inst Methods & Instrumentat Synchrotron Radiat Res, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jiang, Jyh-Chiang
    Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan..
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Condensed Matter Physics of Energy Materials.
    Initial SEI formation in LiBOB-, LiDFOB- and LiBF4-containing PEO electrolytes2024In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 12, no 15, p. 9184-9199Article in journal (Refereed)
    Abstract [en]

    A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs – polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) – using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.

    Download full text (pdf)
    fulltext
  • 13.
    Andersson, Rassmus
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    See, Jennifer
    Brewer Sci, Rolla, MO 65401 USA..
    Flaim, Tony D.
    Brewer Sci, Rolla, MO 65401 USA..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Mindemark, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Designing Polyurethane Solid Polymer Electrolytes for High-Temperature Lithium Metal Batteries2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 1, p. 407-418Article in journal (Refereed)
    Abstract [en]

    Potentially high-performance lithium metal cells in extreme high-temperature electrochemical environments is a challenging but attractive battery concept that requires stable and robust electrolytes to avoid severely limiting lifetimes of the cells. Here, the properties of tailored polyester and polycarbonate diols as the soft segments in polyurethanes are investigated and electrochemically evaluated for use as solid polymer electrolytes in lithium metal batteries. The polyurethanes demonstrate high mechanical stability against deformation at low flow rates and moreover at temperatures up above 100 degrees C, enabled by the hard urethane segments. The results further indicate transferrable ion transport properties of the pure polymers when incorporated as the soft segments in the polyurethanes, offering designing opportunities of the polyurethane by tuning the soft segment ratio and composition. Long-term electrochemical cycling of polyurethane-containing cells in lithium metal batteries at 80 degrees C proves the stability at elevated temperatures as well as the compatibility with lithium metal with stable cycling maintained after 2000 cycles.

    Download full text (pdf)
    fulltext
  • 14.
    Asfaw, Habtom D.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Kotronia, Antonia
    Department of Chemistry, University of Southampton, Southampton, UK.
    Garcia-Araez, Nuria
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Charting the course to solid-state dual-ion batteries2023In: Carbon Energy, ISSN 2637-9368, article id e425Article, review/survey (Refereed)
    Abstract [en]

    An electrolyte destined for use in a dual-ion battery (DIB) must be stable at the inherently high potential required for anion intercalation in the graphite electrode, while also protecting the Al current collector from anodic dissolution. A higher salt concentration is needed in the electrolyte, in comparison to typical battery electrolytes, to maximize energy density, while ensuring acceptable ionic conductivity and operational safety. In recent years, studies have demonstrated that highly concentrated organic electrolytes, ionic liquids, gel polymer electrolytes (GPEs), ionogels, and water-in-salt electrolytes can potentially be used in DIBs. GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency, energy density, and long-term cycle life of DIBs. Furthermore, GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance. In this review, we highlight the latest advances in the application of different electrolytes in DIBs, with particular emphasis on GPEs.

    Download full text (pdf)
    fulltext
  • 15.
    Benitez, Almudena
    et al.
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Amaro-Gahete, Juan
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Organ, Cordoba 14071, Spain..
    Chien, Yu-Chuan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Caballero, Alvaro
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Morales, Julian
    Univ Cordoba, Inst Univ Nanoquim IUNAN, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host2022In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 154, article id 111783Article in journal (Refereed)
    Abstract [en]

    While biomass waste is generated in abundance, these materials and their production processes are generally environmentally friendly, low cost, non-hazardous and easily scalable. These advantages position biomass materials as excellent candidates to solve problems of environmental pollution, primarily by substitution of less sustainable counterparts. This also applies to energy storage systems such as batteries, where several components have large environmental impacts. Lithium-Sulfur batteries have, in this context, been extensively researched to cope with the growing energy needs, and are expected to foresee a growing commercialization. Specifically, advances in the use of renewable cathode materials for Li-S batteries is a field that has been widely addressed in recent years, with carbonaceous materials (C) and/or activated carbons (AC), obtained from biomass, being intensively studied. We here reviewed this field through a classification and discussion of carbonaceous materials from natural waste according to the type of biomass: (1) woody, (2) herbaceous and agricultural, (3) aquatic, (4) animal and human, and (5) contaminated and industrial biomass waste materials. In addition, all porous carbons or activated carbons used as sulfur hosts have been exhaustively evaluated in terms of origin, synthesis parameters, physical properties, and electrochemical performance in Li-S batteries. The purpose is to provide a general description of the progress in the preparation of carbons from biomass resources, examine the textural and electrochemical properties of these materials focusing on the last decade, and also to present an outlook for future research in this developing area.

    Download full text (pdf)
    fulltext
  • 16.
    Benitez, Almudena
    et al.
    Univ Cordoba, Inst Univ Nanoquim, Fac Ciencias, Dept Quim Inorgan & Ingn Quim, Cordoba 14071, Spain..
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A renaissance for lithium-sulfur batteries through low-cost, efficient, and sustainable biomass cathodes2022In: One Earth, ISSN 2590-3330, E-ISSN 2590-3322, Vol. 5, no 3, p. 224-226Article in journal (Other academic)
    Abstract [en]

    Although lithium-ion batteries face material sustainability issues, one promising alternative-lithium-sulfur (Li-S) batteries-suffers from destructive chemical reactions. Recently in Chem, Hou et al. proposed one viable solution: an encapsulating lithium polysulfide electrolyte. We discuss this advance and the potential role of biomass as an alternative sustainable material for Li-S battery cathodes.

  • 17.
    Bergfelt, Andreas
    et al.
    Uppsala University,